Abstract

A thin film polarization filter has been patterned and etched using reactive ion etching (RIE) in order to create 8 by 8 microns square periodic structures. The micropolarization filters retain the original extinction ratios of the unpatterned thin film. The measured extinction ratios on the micropolarization filters are ~1000 in the blue and green visible spectrum and ~100 in the red spectrum. Various gas combinations for RIE have been explored in order to determine the right concentration mix of CF4 and O2 that gives optimum etching rate, in terms of speed and under-etching. Theoretical explanation for the optimum etching rate has also been presented. In addition, anisotropic etching with 1μm under cutting of a 10μm thick film has been achieved. Experimental results for the patterned structures under polarized light are presented. The array of micropolarizers will be deposited on top of a custom made CMOS imaging sensor in order to compute the first three Stokes parameters in real time.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles in Optics (Pergamon, New York, 1965).
  2. J. K. Boger, "Pupil-plane speckleimaging with a referenced polarization technique," Opt. Lett. 24,611-613 (1999).
    [CrossRef]
  3. T. J. Rogne, F. G. Smith, and J. E. Rice, "Passive target detection using polarized components of infrared signature," Proc. SPIE 1317, 3756-3764 (1990).
  4. Y. Y. Schechner and N. Karpel, "Clear underwater vision," Proc. IEEE CVPR 1, 536-543 (2004).
  5. T. W. Cronin and J. Marshall, "Parallel processing and image analysis in the eyes of Mantis shrimps," The Biological Bulletin 200,177-189 (2001).
    [CrossRef] [PubMed]
  6. T. Labhart, "Polarization opponent interneurons in the insect visual system," Nature,  331,435-437 (1988).
    [CrossRef]
  7. A. G. Andreou and Z. K. Kalayjian, "Polarization imaging: principles and integrated polarimeters," IEEE Sens. J. 2,566-576 (2002).
    [CrossRef]
  8. M. Momeni and A. H. Titus, "An analog VLSI chip emulating polarization vision of octopus retina," IEEE Trans. Neural. Netw. 17,222-232 (2006).
    [CrossRef]
  9. L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, "Liquid crystal polarization camera," IEEE Trans. Rob. Autom. 13,195-203 (1997).
    [CrossRef]
  10. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, "Target detection in optically scattering media by Polarization-Difference Imaging," Appl. Opt. 35,1855-1870 (1996).
    [CrossRef] [PubMed]
  11. J. S. Tyo, E. N. Pugh, and N. Engheta, "Colorimetric representations for use with polarization-difference imaging of objects in scattering media," J. Opt. Soc. Am. A 15,367-374 (1998).
    [CrossRef]
  12. Z. K. Kalayjian, "VLSEye: Optoelectronic Vision and Image Processing," Ph.D. dissertation, Johns Hopkins Univ., Baltimore, MD 1999.
  13. Z. K. Kalayjian, A. G. Andreou, and L. B. Wolff, "1D polarisation contrast retina," Electron. Lett. 33,38-40 (1997).
    [CrossRef]
  14. T. Hamamoto, H. Toyota, and H. Kikuta, "Microretarder array for imaging polarimetry in the visible wavelength region," Proc. SPIE 440, 293-300 (2001).
    [CrossRef]
  15. J. Guo and D. Brady, "Fabrication of high-resolution micropolarizer array," Opt. Eng. 36,2268-2271 (1997).
    [CrossRef]
  16. J. Guo and D. Brady, "Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry," Appl. Opt. 39,1486-1492 (2000).
    [CrossRef]
  17. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, "Micropolarizer Array for Infrared Imaging Polarimetry," J. Opt. Soc. Am. A 16,1184-1193 (1999).
    [CrossRef]
  18. V. Gruev and R. Etienne-Cummings, "Implementation of steerable spatiotemporal image filters on the focal plane," IEEE Trans. on Circ. and Sys.II: Anal. and Dig. Sig. Proc. 49,233-244 (2002).
  19. V. Gruev, J. Van der Spiegel, and N. Engheta, "Image sensor with focal plane extraction of Polarimetric Information," Proc. IEEE ISCAS 213-216 (2006).
  20. D. Goldstein, Polarized Light, (Marcel Dekker, New York, NY, 2003).
    [CrossRef]
  21. http://www.dymax.com
  22. http://www.microchem.com
  23. J. F. Battey, "Design criteria for uniform reaction rates in an oxygen plasma," IEEE Electron. Device Lett. 24, 140-146 (1977).
  24. J. M. Cook and B. W. Benson, "Application of EPR spectroscopy to oxidative removal of organic materials," J. Electrochem. Soc. 130,2459-2464 (1983).
    [CrossRef]
  25. T. T. Wydeven, C. C. Johnson, M. A. Golub, M. S. Hsu, and N. R. Lerner, "Plasma Polymerization," Proc. ACS Symposium Series 299-314 (1979).
  26. http://www.edmundoptics.com

2006 (1)

M. Momeni and A. H. Titus, "An analog VLSI chip emulating polarization vision of octopus retina," IEEE Trans. Neural. Netw. 17,222-232 (2006).
[CrossRef]

2004 (1)

Y. Y. Schechner and N. Karpel, "Clear underwater vision," Proc. IEEE CVPR 1, 536-543 (2004).

2002 (2)

V. Gruev and R. Etienne-Cummings, "Implementation of steerable spatiotemporal image filters on the focal plane," IEEE Trans. on Circ. and Sys.II: Anal. and Dig. Sig. Proc. 49,233-244 (2002).

A. G. Andreou and Z. K. Kalayjian, "Polarization imaging: principles and integrated polarimeters," IEEE Sens. J. 2,566-576 (2002).
[CrossRef]

2001 (2)

T. Hamamoto, H. Toyota, and H. Kikuta, "Microretarder array for imaging polarimetry in the visible wavelength region," Proc. SPIE 440, 293-300 (2001).
[CrossRef]

T. W. Cronin and J. Marshall, "Parallel processing and image analysis in the eyes of Mantis shrimps," The Biological Bulletin 200,177-189 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

1998 (1)

1997 (3)

Z. K. Kalayjian, A. G. Andreou, and L. B. Wolff, "1D polarisation contrast retina," Electron. Lett. 33,38-40 (1997).
[CrossRef]

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, "Liquid crystal polarization camera," IEEE Trans. Rob. Autom. 13,195-203 (1997).
[CrossRef]

J. Guo and D. Brady, "Fabrication of high-resolution micropolarizer array," Opt. Eng. 36,2268-2271 (1997).
[CrossRef]

1996 (1)

1990 (1)

T. J. Rogne, F. G. Smith, and J. E. Rice, "Passive target detection using polarized components of infrared signature," Proc. SPIE 1317, 3756-3764 (1990).

1988 (1)

T. Labhart, "Polarization opponent interneurons in the insect visual system," Nature,  331,435-437 (1988).
[CrossRef]

1983 (1)

J. M. Cook and B. W. Benson, "Application of EPR spectroscopy to oxidative removal of organic materials," J. Electrochem. Soc. 130,2459-2464 (1983).
[CrossRef]

1977 (1)

J. F. Battey, "Design criteria for uniform reaction rates in an oxygen plasma," IEEE Electron. Device Lett. 24, 140-146 (1977).

Andreou, A. G.

A. G. Andreou and Z. K. Kalayjian, "Polarization imaging: principles and integrated polarimeters," IEEE Sens. J. 2,566-576 (2002).
[CrossRef]

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, "Liquid crystal polarization camera," IEEE Trans. Rob. Autom. 13,195-203 (1997).
[CrossRef]

Z. K. Kalayjian, A. G. Andreou, and L. B. Wolff, "1D polarisation contrast retina," Electron. Lett. 33,38-40 (1997).
[CrossRef]

Battey, J. F.

J. F. Battey, "Design criteria for uniform reaction rates in an oxygen plasma," IEEE Electron. Device Lett. 24, 140-146 (1977).

Benson, B. W.

J. M. Cook and B. W. Benson, "Application of EPR spectroscopy to oxidative removal of organic materials," J. Electrochem. Soc. 130,2459-2464 (1983).
[CrossRef]

Boger, J. K.

Brady, D.

J. Guo and D. Brady, "Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry," Appl. Opt. 39,1486-1492 (2000).
[CrossRef]

J. Guo and D. Brady, "Fabrication of high-resolution micropolarizer array," Opt. Eng. 36,2268-2271 (1997).
[CrossRef]

Cook, J. M.

J. M. Cook and B. W. Benson, "Application of EPR spectroscopy to oxidative removal of organic materials," J. Electrochem. Soc. 130,2459-2464 (1983).
[CrossRef]

Cronin, T. W.

T. W. Cronin and J. Marshall, "Parallel processing and image analysis in the eyes of Mantis shrimps," The Biological Bulletin 200,177-189 (2001).
[CrossRef] [PubMed]

Deguzman, P. C.

Engheta, N.

Etienne-Cummings, R.

V. Gruev and R. Etienne-Cummings, "Implementation of steerable spatiotemporal image filters on the focal plane," IEEE Trans. on Circ. and Sys.II: Anal. and Dig. Sig. Proc. 49,233-244 (2002).

Gruev, V.

V. Gruev and R. Etienne-Cummings, "Implementation of steerable spatiotemporal image filters on the focal plane," IEEE Trans. on Circ. and Sys.II: Anal. and Dig. Sig. Proc. 49,233-244 (2002).

Guo, J.

J. Guo and D. Brady, "Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry," Appl. Opt. 39,1486-1492 (2000).
[CrossRef]

J. Guo and D. Brady, "Fabrication of high-resolution micropolarizer array," Opt. Eng. 36,2268-2271 (1997).
[CrossRef]

Hamamoto, T.

T. Hamamoto, H. Toyota, and H. Kikuta, "Microretarder array for imaging polarimetry in the visible wavelength region," Proc. SPIE 440, 293-300 (2001).
[CrossRef]

Jones, M. W.

Kalayjian, Z. K.

A. G. Andreou and Z. K. Kalayjian, "Polarization imaging: principles and integrated polarimeters," IEEE Sens. J. 2,566-576 (2002).
[CrossRef]

Z. K. Kalayjian, A. G. Andreou, and L. B. Wolff, "1D polarisation contrast retina," Electron. Lett. 33,38-40 (1997).
[CrossRef]

Karpel, N.

Y. Y. Schechner and N. Karpel, "Clear underwater vision," Proc. IEEE CVPR 1, 536-543 (2004).

Kikuta, H.

T. Hamamoto, H. Toyota, and H. Kikuta, "Microretarder array for imaging polarimetry in the visible wavelength region," Proc. SPIE 440, 293-300 (2001).
[CrossRef]

Labhart, T.

T. Labhart, "Polarization opponent interneurons in the insect visual system," Nature,  331,435-437 (1988).
[CrossRef]

Mancini, T. A.

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, "Liquid crystal polarization camera," IEEE Trans. Rob. Autom. 13,195-203 (1997).
[CrossRef]

Marshall, J.

T. W. Cronin and J. Marshall, "Parallel processing and image analysis in the eyes of Mantis shrimps," The Biological Bulletin 200,177-189 (2001).
[CrossRef] [PubMed]

Meier, J. T.

Momeni, M.

M. Momeni and A. H. Titus, "An analog VLSI chip emulating polarization vision of octopus retina," IEEE Trans. Neural. Netw. 17,222-232 (2006).
[CrossRef]

Nordin, G. P.

Pouliquen, P.

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, "Liquid crystal polarization camera," IEEE Trans. Rob. Autom. 13,195-203 (1997).
[CrossRef]

Pugh, E. N.

Rice, J. E.

T. J. Rogne, F. G. Smith, and J. E. Rice, "Passive target detection using polarized components of infrared signature," Proc. SPIE 1317, 3756-3764 (1990).

Rogne, T. J.

T. J. Rogne, F. G. Smith, and J. E. Rice, "Passive target detection using polarized components of infrared signature," Proc. SPIE 1317, 3756-3764 (1990).

Rowe, M. P.

Schechner, Y. Y.

Y. Y. Schechner and N. Karpel, "Clear underwater vision," Proc. IEEE CVPR 1, 536-543 (2004).

Smith, F. G.

T. J. Rogne, F. G. Smith, and J. E. Rice, "Passive target detection using polarized components of infrared signature," Proc. SPIE 1317, 3756-3764 (1990).

Titus, A. H.

M. Momeni and A. H. Titus, "An analog VLSI chip emulating polarization vision of octopus retina," IEEE Trans. Neural. Netw. 17,222-232 (2006).
[CrossRef]

Toyota, H.

T. Hamamoto, H. Toyota, and H. Kikuta, "Microretarder array for imaging polarimetry in the visible wavelength region," Proc. SPIE 440, 293-300 (2001).
[CrossRef]

Tyo, J. S.

Wolff, L. B.

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, "Liquid crystal polarization camera," IEEE Trans. Rob. Autom. 13,195-203 (1997).
[CrossRef]

Z. K. Kalayjian, A. G. Andreou, and L. B. Wolff, "1D polarisation contrast retina," Electron. Lett. 33,38-40 (1997).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

Z. K. Kalayjian, A. G. Andreou, and L. B. Wolff, "1D polarisation contrast retina," Electron. Lett. 33,38-40 (1997).
[CrossRef]

IEEE Electron. Device Lett. (1)

J. F. Battey, "Design criteria for uniform reaction rates in an oxygen plasma," IEEE Electron. Device Lett. 24, 140-146 (1977).

IEEE Sens. J. (1)

A. G. Andreou and Z. K. Kalayjian, "Polarization imaging: principles and integrated polarimeters," IEEE Sens. J. 2,566-576 (2002).
[CrossRef]

IEEE Trans. Neural. Netw. (1)

M. Momeni and A. H. Titus, "An analog VLSI chip emulating polarization vision of octopus retina," IEEE Trans. Neural. Netw. 17,222-232 (2006).
[CrossRef]

IEEE Trans. Rob. Autom. (1)

L. B. Wolff, T. A. Mancini, P. Pouliquen, and A. G. Andreou, "Liquid crystal polarization camera," IEEE Trans. Rob. Autom. 13,195-203 (1997).
[CrossRef]

II: Anal. and Dig. Sig. Proc. (1)

V. Gruev and R. Etienne-Cummings, "Implementation of steerable spatiotemporal image filters on the focal plane," IEEE Trans. on Circ. and Sys.II: Anal. and Dig. Sig. Proc. 49,233-244 (2002).

J. Electrochem. Soc. (1)

J. M. Cook and B. W. Benson, "Application of EPR spectroscopy to oxidative removal of organic materials," J. Electrochem. Soc. 130,2459-2464 (1983).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nature (1)

T. Labhart, "Polarization opponent interneurons in the insect visual system," Nature,  331,435-437 (1988).
[CrossRef]

Opt. Eng. (1)

J. Guo and D. Brady, "Fabrication of high-resolution micropolarizer array," Opt. Eng. 36,2268-2271 (1997).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE CVPR (1)

Y. Y. Schechner and N. Karpel, "Clear underwater vision," Proc. IEEE CVPR 1, 536-543 (2004).

Proc. SPIE (2)

T. J. Rogne, F. G. Smith, and J. E. Rice, "Passive target detection using polarized components of infrared signature," Proc. SPIE 1317, 3756-3764 (1990).

T. Hamamoto, H. Toyota, and H. Kikuta, "Microretarder array for imaging polarimetry in the visible wavelength region," Proc. SPIE 440, 293-300 (2001).
[CrossRef]

The Biological Bulletin (1)

T. W. Cronin and J. Marshall, "Parallel processing and image analysis in the eyes of Mantis shrimps," The Biological Bulletin 200,177-189 (2001).
[CrossRef] [PubMed]

Other (8)

M. Born and E. Wolf, Principles in Optics (Pergamon, New York, 1965).

Z. K. Kalayjian, "VLSEye: Optoelectronic Vision and Image Processing," Ph.D. dissertation, Johns Hopkins Univ., Baltimore, MD 1999.

V. Gruev, J. Van der Spiegel, and N. Engheta, "Image sensor with focal plane extraction of Polarimetric Information," Proc. IEEE ISCAS 213-216 (2006).

D. Goldstein, Polarized Light, (Marcel Dekker, New York, NY, 2003).
[CrossRef]

http://www.dymax.com

http://www.microchem.com

T. T. Wydeven, C. C. Johnson, M. A. Golub, M. S. Hsu, and N. R. Lerner, "Plasma Polymerization," Proc. ACS Symposium Series 299-314 (1979).

http://www.edmundoptics.com

Supplementary Material (4)

» Media 1: MOV (2933 KB)     
» Media 2: MOV (3069 KB)     
» Media 3: MOV (11746 KB)     
» Media 4: MOV (12739 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Block diagram of the complete imaging system: imaging array, processing circuitry and micropolarization array

Fig. 2.
Fig. 2.

Microfabrication steps for creating a dual layer polarization structures

Fig. 3.
Fig. 3.

Etching rate of PVA and SU-8 as a function of a CF4 concentration in an O2 and CF4 gas mix.

Fig. 4.
Fig. 4.

Scanning electron microscope images of the developed SU-8 photoresist structures. Left panel shows a top view of a small neighborhood of SU-8 squares with 10μm by 10μm pitch. Right image shows an array of periodic SU-8 square structures with 15μm thickness, which was recorded under 52° angle tilt.

Fig. 5.
Fig. 5.

Scanning electron microscope images of the top PVA tier. Left image shows an array of 8μm by 8μm PVA structures. Right panel shows a single PVA structure with 8μm pitch and 10μm thickness, which was recorded under 52 degree angle tilt.

Fig. 6.
Fig. 6.

Experimental results for the dual-tier micropolarization filters offset by 90 degrees. The first layer in the left sample attenuates perpendicular polarized light while the second layer is transparent. The reverse is observed in the right sample.

Fig. 7.
Fig. 7.

Experimental results for the two axial micropolarization filters offset by 45 degrees. The images are illuminated with 0, 45, 90 and 135 degree polarization for the incident polarized light, respectively.

Fig. 8.
Fig. 8.

(3 MB) Movie of the dual axial micropolarizer array (13MB version).

Fig. 9.
Fig. 9.

(3 MB) Movie of a single micropolarizer element (12MB version).

Fig. 10.
Fig. 10.

Transmission of both PVA structures follow Malus’ law for polarization irradiance

Fig. 11.
Fig. 11.

Transmission of a single PVA micro structure under different wavelengths. The transmission properties of unpatterned PVA are also presented.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S 0 = I t
S 1 = 2 I 0 ° 0 I t
S 2 = 2 I 45 ° 0 I t
S 3 = I t 2 I 45 ° π 2
O O | C = C + O 2 : > C C + O 2 > C = O + CO

Metrics