Abstract

In this paper, we report counter-clockwise, clockwise, and, for the first time to our knowledge, butterfly bistability in 1550 nm Vertical Cavity Semiconductor Optical Amplifiers (VCSOA). Bistable operation is experimentally observed for bias currents ranging from 66–122% of threshold with switching powers as low as 2 μW. These switching powers are two orders of magnitude lower than any previous results in 1550 nm VCSOAs. These switching powers are consistent with previous reports on optical bistability in 850 nm VCSOAs and provide an important step towards the realization of small footprint, low power optical logic/switching elements in the 1550 nm wavelength band.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Sawchuk and T. C. Strand, “Digital optical computing,” Proceedings of the IEEE 72 no.7, 758 (1984).
    [Crossref]
  2. H. Kawaguchi, Bistabilities and Nonlinearities in Laser Diodes. (Artech House, Boston, 1994).
  3. M. J. Adams, “Optical amplifier bistabilty on reflection,” Opt. Quantum Electron. 19, 37 (1987).
    [Crossref]
  4. N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers. (World Scientific, Hackensack, N.J., 2006).
    [Crossref]
  5. Q. Linet al, “40-gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, no. 11 2376 (2005).
    [Crossref]
  6. P. Pakdeevanich and M. J. Adams, “Measurements and Modeling of Reflective Bistability in 1.55-μm Laser Diode Amplifiers,” IEEE J. Quantum Electron. 35, 1894–1903 (1999).
    [Crossref]
  7. J. Mitchellet al, “Optical bistability in asymmetric Fabry - Perot laser-diode amplifiers,” Opt. Lett. 19, 269 (1994).
    [Crossref] [PubMed]
  8. T. Moriet al, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88, 101102 (2006).
    [Crossref]
  9. P. Wenet al, “Observation of bistability in a vertical-cavity semiconductor optical amplifier (VCSOA).” Opt. Express 10, 1273 (2002).
    [PubMed]
  10. M. Sanchezet al, “Rate equations for modeling dispersive nonlinearity in Fabry-Perot semiconductor optical amplifiers.” Opt. Express 11, 2689 (2003).
    [Crossref] [PubMed]
  11. M. Sanchezet al, “Polarization anisotropy in vertical-cavity semiconductor optical amplifiers”. Opt. Lett. 29, 1888 (2004).
    [Crossref] [PubMed]
  12. H. Zhanget al, “Observation of Wavelength Bistability in 850nm Vertical-Cavity Semiconductor Optical Amplifiers,” presented at Frontier in Optics, OSA, Rochester, NY, Oct. 2006.
  13. P. Wenet al, “Optical bistability in vertical-cavity semiconductor optical amplifiers,” Appl. Opt. 45, 6349 (2006).
    [Crossref] [PubMed]
  14. H. Zhanget al, Optoelectronics Group, University of California, San Diego, La Jolla, CA. 92093, are preparing a manuscript to be called “Cascadable all-optical inverter based n a non-linear Vertical Cavity Semiconductor Optical Amplifier”.
  15. H. Zhanget al, Optoelectronics Group, University of California, San Diego, La Jolla, CA. 92093, are preparing a manuscript to be called “All-optical Oscillator based on a single bistable Vertical Cavity Semiconductor Optical Amplifier (VCSOA)”.
  16. S. Esener and P. Wen, “Photonics in Computing: Interconnects and Beyond,” presented at Frontier in Optics, OSA, Rochester, NY, Oct. 2006.
  17. A. Karimet al, “Long-wavelength vertical-cavity lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6, 1244 (2000).
    [Crossref]
  18. A. Hurtadoet al, “Optical bistability and nonlinear gain in 1.55 um VCSOA,” Electron. Lett. 42, 483–484 (2006).
    [Crossref]
  19. A. Hurtadoet al, “Modeling Reflective Bistability in Vertical-Cavity Semiconductor Optical Amplifiers,” IEEE J. Quantum. Electron. 41, 376–383 (2005).
    [Crossref]
  20. S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers. (John Wiley & Sons, Hoboken, N. J., 2003).
    [Crossref]
  21. S. F. Yu, “Theoretical analysis of polarization bistability in vertical cavity surface emitting semiconductor lasers,” IEEE J. Lightwave Technol. 15, 1032–1041 (1997).
    [Crossref]

2006 (3)

T. Moriet al, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88, 101102 (2006).
[Crossref]

P. Wenet al, “Optical bistability in vertical-cavity semiconductor optical amplifiers,” Appl. Opt. 45, 6349 (2006).
[Crossref] [PubMed]

A. Hurtadoet al, “Optical bistability and nonlinear gain in 1.55 um VCSOA,” Electron. Lett. 42, 483–484 (2006).
[Crossref]

2005 (2)

A. Hurtadoet al, “Modeling Reflective Bistability in Vertical-Cavity Semiconductor Optical Amplifiers,” IEEE J. Quantum. Electron. 41, 376–383 (2005).
[Crossref]

Q. Linet al, “40-gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, no. 11 2376 (2005).
[Crossref]

2004 (1)

2003 (1)

2002 (1)

2000 (1)

A. Karimet al, “Long-wavelength vertical-cavity lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6, 1244 (2000).
[Crossref]

1999 (1)

P. Pakdeevanich and M. J. Adams, “Measurements and Modeling of Reflective Bistability in 1.55-μm Laser Diode Amplifiers,” IEEE J. Quantum Electron. 35, 1894–1903 (1999).
[Crossref]

1997 (1)

S. F. Yu, “Theoretical analysis of polarization bistability in vertical cavity surface emitting semiconductor lasers,” IEEE J. Lightwave Technol. 15, 1032–1041 (1997).
[Crossref]

1994 (1)

1987 (1)

M. J. Adams, “Optical amplifier bistabilty on reflection,” Opt. Quantum Electron. 19, 37 (1987).
[Crossref]

1984 (1)

A. A. Sawchuk and T. C. Strand, “Digital optical computing,” Proceedings of the IEEE 72 no.7, 758 (1984).
[Crossref]

Adams, M. J.

P. Pakdeevanich and M. J. Adams, “Measurements and Modeling of Reflective Bistability in 1.55-μm Laser Diode Amplifiers,” IEEE J. Quantum Electron. 35, 1894–1903 (1999).
[Crossref]

M. J. Adams, “Optical amplifier bistabilty on reflection,” Opt. Quantum Electron. 19, 37 (1987).
[Crossref]

Dutta, N. K.

N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers. (World Scientific, Hackensack, N.J., 2006).
[Crossref]

Esener, S.

S. Esener and P. Wen, “Photonics in Computing: Interconnects and Beyond,” presented at Frontier in Optics, OSA, Rochester, NY, Oct. 2006.

Hurtado, A.

A. Hurtadoet al, “Optical bistability and nonlinear gain in 1.55 um VCSOA,” Electron. Lett. 42, 483–484 (2006).
[Crossref]

A. Hurtadoet al, “Modeling Reflective Bistability in Vertical-Cavity Semiconductor Optical Amplifiers,” IEEE J. Quantum. Electron. 41, 376–383 (2005).
[Crossref]

Karim, A.

A. Karimet al, “Long-wavelength vertical-cavity lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6, 1244 (2000).
[Crossref]

Kawaguchi, H.

H. Kawaguchi, Bistabilities and Nonlinearities in Laser Diodes. (Artech House, Boston, 1994).

Lin, Q.

Q. Linet al, “40-gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, no. 11 2376 (2005).
[Crossref]

Mitchell, J.

Mori, T.

T. Moriet al, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88, 101102 (2006).
[Crossref]

Pakdeevanich, P.

P. Pakdeevanich and M. J. Adams, “Measurements and Modeling of Reflective Bistability in 1.55-μm Laser Diode Amplifiers,” IEEE J. Quantum Electron. 35, 1894–1903 (1999).
[Crossref]

Sanchez, M.

Sawchuk, A. A.

A. A. Sawchuk and T. C. Strand, “Digital optical computing,” Proceedings of the IEEE 72 no.7, 758 (1984).
[Crossref]

Strand, T. C.

A. A. Sawchuk and T. C. Strand, “Digital optical computing,” Proceedings of the IEEE 72 no.7, 758 (1984).
[Crossref]

Wang, Q.

N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers. (World Scientific, Hackensack, N.J., 2006).
[Crossref]

Wen, P.

Yu, S. F.

S. F. Yu, “Theoretical analysis of polarization bistability in vertical cavity surface emitting semiconductor lasers,” IEEE J. Lightwave Technol. 15, 1032–1041 (1997).
[Crossref]

S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers. (John Wiley & Sons, Hoboken, N. J., 2003).
[Crossref]

Zhang, H.

H. Zhanget al, “Observation of Wavelength Bistability in 850nm Vertical-Cavity Semiconductor Optical Amplifiers,” presented at Frontier in Optics, OSA, Rochester, NY, Oct. 2006.

H. Zhanget al, Optoelectronics Group, University of California, San Diego, La Jolla, CA. 92093, are preparing a manuscript to be called “Cascadable all-optical inverter based n a non-linear Vertical Cavity Semiconductor Optical Amplifier”.

H. Zhanget al, Optoelectronics Group, University of California, San Diego, La Jolla, CA. 92093, are preparing a manuscript to be called “All-optical Oscillator based on a single bistable Vertical Cavity Semiconductor Optical Amplifier (VCSOA)”.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Moriet al, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88, 101102 (2006).
[Crossref]

Electron. Lett. (1)

A. Hurtadoet al, “Optical bistability and nonlinear gain in 1.55 um VCSOA,” Electron. Lett. 42, 483–484 (2006).
[Crossref]

IEEE J. Lightwave Technol. (1)

S. F. Yu, “Theoretical analysis of polarization bistability in vertical cavity surface emitting semiconductor lasers,” IEEE J. Lightwave Technol. 15, 1032–1041 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Pakdeevanich and M. J. Adams, “Measurements and Modeling of Reflective Bistability in 1.55-μm Laser Diode Amplifiers,” IEEE J. Quantum Electron. 35, 1894–1903 (1999).
[Crossref]

IEEE J. Quantum. Electron. (1)

A. Hurtadoet al, “Modeling Reflective Bistability in Vertical-Cavity Semiconductor Optical Amplifiers,” IEEE J. Quantum. Electron. 41, 376–383 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Karimet al, “Long-wavelength vertical-cavity lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6, 1244 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Q. Linet al, “40-gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, no. 11 2376 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

M. J. Adams, “Optical amplifier bistabilty on reflection,” Opt. Quantum Electron. 19, 37 (1987).
[Crossref]

Proceedings of the IEEE (1)

A. A. Sawchuk and T. C. Strand, “Digital optical computing,” Proceedings of the IEEE 72 no.7, 758 (1984).
[Crossref]

Other (7)

H. Kawaguchi, Bistabilities and Nonlinearities in Laser Diodes. (Artech House, Boston, 1994).

N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers. (World Scientific, Hackensack, N.J., 2006).
[Crossref]

H. Zhanget al, “Observation of Wavelength Bistability in 850nm Vertical-Cavity Semiconductor Optical Amplifiers,” presented at Frontier in Optics, OSA, Rochester, NY, Oct. 2006.

H. Zhanget al, Optoelectronics Group, University of California, San Diego, La Jolla, CA. 92093, are preparing a manuscript to be called “Cascadable all-optical inverter based n a non-linear Vertical Cavity Semiconductor Optical Amplifier”.

H. Zhanget al, Optoelectronics Group, University of California, San Diego, La Jolla, CA. 92093, are preparing a manuscript to be called “All-optical Oscillator based on a single bistable Vertical Cavity Semiconductor Optical Amplifier (VCSOA)”.

S. Esener and P. Wen, “Photonics in Computing: Interconnects and Beyond,” presented at Frontier in Optics, OSA, Rochester, NY, Oct. 2006.

S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers. (John Wiley & Sons, Hoboken, N. J., 2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Illustration of (1) explaining the existence of clockwise bistability in reflection mode VCSOAs. Solid curves represent higher bias-lower detuning case which generates counterclockwise hysteresis in Iref. Dotted curves represent lower bias-higher detuning case which generates clockwise hysteresis in Iref. The transition between these two regimes generates butterfly hysteresis.

Fig. 2.
Fig. 2.

Experimental Setup to study bistabilty in 1550 nm VCSOA.

Fig. 3.
Fig. 3.

All three types of bistability in a 1550 nm VCSOA for constant Ibias = 0.96*Ith. Wavelength detuning is swept towards longer wavelengths. A is for no bistability. B is counterclockwise bistability. C is butterfly bistability. D is clockwise bistability.

Fig. 4.
Fig. 4.

All three types of bistability for constant wavelength 1542.354 nm . Ibias is swept. 99%*Ith shows counterclockwise bistability. 94%*Ith shows butterfly bistability. 91%*Ith shows clockwise bistability.

Fig. 5.
Fig. 5.

Counterclockwise Bistability for 0.99*Ith.

Fig. 6.
Fig. 6.

Butterfly Bistability for 0.99*Ith.

Fig. 7.
Fig. 7.

Clockwise Bistability for 0.89*Ith.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ref = I in + gL∙ I av I trans

Metrics