Abstract

We report the first experiment on the optical modulation of dispersion forces through a change of the carrier density in a Si membrane. For this purpose a high-vacuum based atomic force microscope and excitation light pulses from an Ar laser are used. The experimental results are compared with two theoretical models. The modulation of the dispersion force will find applications in optomechanical micromachines.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Mahanty and B. W. Ninham, Dispersion Forces (Academic Press, New York, 1976).
  2. P. W. Milonni, The Quantum Vacuum (Academic Press, Boston, 1994).
  3. M. Kardar and R. Golestanian, "The "friction" of vacuum and other fluctuation-induced forces," Rev. Mod. Phys. 71, 1233-1245 (1999).
    [CrossRef]
  4. V. A. Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University Press, Cambridge, 2005).
    [CrossRef]
  5. E. V. Blagov, G. L. Klimchitskaya, and V. M. Mostepanenko, "Van der Waals interaction between microparticle and uniaxial crystal with application to hydrogen atoms and multiwall carbon nanotubes," Phys. Rev. B 71, 235401-1-12 (2005).
    [CrossRef]
  6. H. Oberst, Y. Tashiro, K. Shimizu, and F. Shimizu, "Quantum reflection of He; on silicon," Phys. Rev. A 71, 052901-1-8 (2005).
    [CrossRef]
  7. B. S. Stipe, M. J. Mamin, T. D. Stowe, T. W. Kenny, and D. Rugar, "Noncontact friction and force fluctuations between closely spaced bodies," Phys. Rev. Lett. 87, 096801-1-4 (2001).
    [CrossRef] [PubMed]
  8. E. Buks and M. L. Roukes, "Stiction, adhesion energy, and the Casimir effect in micromechanical systems," Phys. Rev. B 63, 033402-1-4 (2001).
    [CrossRef]
  9. R. S. Decca, E. Fischbach, G. L. Klimchitskaya, D. López, D. E. Krause, and V. M. Mostepanenko, "Improved test of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements," Phys. Rev. D 68, 116003-1-15 (2003).
    [CrossRef]
  10. R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepanenko, "Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions," Ann. Phys. 318, 37-80 (2005).
    [CrossRef]
  11. R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepanenko, "Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates," arXiv: hepph/ 0703290; to appear in Phys. Rev. D.
  12. M. Bordag, U. Mohideen, and V. M. Mostepanenko, "New developments in the Casimir effect," Phys. Rep. 303, 1-205 (2001).
    [CrossRef]
  13. E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics. II (Pergamon, Oxford, 1980).
  14. B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, "Thermal quantum field theory and the Casimir interaction between dielectrics," Phys. Rev. D 72, 085009-1-20 (2005).
    [CrossRef]
  15. F. Chen, U. Mohideen, G. L. Klimchitskaya, and V. M. Mostepanenko, "Investigation of the Casimir force between metal and semiconductor test bodies," Phys. Rev. A 72, 020101(R)-1-4 (2005).
    [CrossRef]
  16. F. Chen, U. Mohideen, G. L. Klimchitskaya, and V. M. Mostepanenko, "Experimental test for the conductivity properties from the Casimir force between metal and semiconductor," Phys. Rev. A 74, 022103-1-14 (2006).
    [CrossRef]
  17. F. Chen, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen, "Demonstration of the difference in the Casimir force for samples with different charge-carrier densities," Phys. Rev. Lett. 97, 170402-1-4 (2006).
    [CrossRef] [PubMed]
  18. S. G. Rabinovich, Measurement Errors and Uncertainties (Springer, New York, 2000).
  19. W. Arnold, S. Hunklinger, and K. Dransfeld, "Influence of optical absorption on the van der Waals interaction between solids," Phys. Rev. B 19, 6049-6056 (1979).
    [CrossRef]
  20. E. D. Palik (ed.), Handbook of Optical Constants of Solids (Academic, New York, 1985).
  21. T. Vogel, G. Dodel, E. Holzhauer, H. Salzmann, and A. Theurer, "High-speed switching of far-infrared radiation by photoionization in a semiconductor," Appl. Opt. 31, 329-337 (1992).
    [CrossRef] [PubMed]
  22. E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, "Unusually low surface-recombination velocity on silicon and germanium surfaces," Phys. Rev. Lett. 57, 249-252 (1986).
    [CrossRef] [PubMed]
  23. A. A. Maradudin and P. Mazur, "Effects of surface roughness on the van der Waals force between macroscopic bodies," Phys. Rev. B 22, 1677-1686 (1980).
    [CrossRef]
  24. J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, "Measurement of the temperature dependence in the Casimir-Polder force," Phys. Rev. Lett. 98, 063201-1-4 (2007).
    [CrossRef] [PubMed]

2005 (1)

R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepanenko, "Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions," Ann. Phys. 318, 37-80 (2005).
[CrossRef]

2001 (1)

M. Bordag, U. Mohideen, and V. M. Mostepanenko, "New developments in the Casimir effect," Phys. Rep. 303, 1-205 (2001).
[CrossRef]

1999 (1)

M. Kardar and R. Golestanian, "The "friction" of vacuum and other fluctuation-induced forces," Rev. Mod. Phys. 71, 1233-1245 (1999).
[CrossRef]

1992 (1)

1986 (1)

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, "Unusually low surface-recombination velocity on silicon and germanium surfaces," Phys. Rev. Lett. 57, 249-252 (1986).
[CrossRef] [PubMed]

1980 (1)

A. A. Maradudin and P. Mazur, "Effects of surface roughness on the van der Waals force between macroscopic bodies," Phys. Rev. B 22, 1677-1686 (1980).
[CrossRef]

1979 (1)

W. Arnold, S. Hunklinger, and K. Dransfeld, "Influence of optical absorption on the van der Waals interaction between solids," Phys. Rev. B 19, 6049-6056 (1979).
[CrossRef]

Allara, D. L.

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, "Unusually low surface-recombination velocity on silicon and germanium surfaces," Phys. Rev. Lett. 57, 249-252 (1986).
[CrossRef] [PubMed]

Arnold, W.

W. Arnold, S. Hunklinger, and K. Dransfeld, "Influence of optical absorption on the van der Waals interaction between solids," Phys. Rev. B 19, 6049-6056 (1979).
[CrossRef]

Bordag, M.

M. Bordag, U. Mohideen, and V. M. Mostepanenko, "New developments in the Casimir effect," Phys. Rep. 303, 1-205 (2001).
[CrossRef]

Bright, T. B.

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, "Unusually low surface-recombination velocity on silicon and germanium surfaces," Phys. Rev. Lett. 57, 249-252 (1986).
[CrossRef] [PubMed]

Chang, C. C.

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, "Unusually low surface-recombination velocity on silicon and germanium surfaces," Phys. Rev. Lett. 57, 249-252 (1986).
[CrossRef] [PubMed]

Decca, R. S.

R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepanenko, "Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions," Ann. Phys. 318, 37-80 (2005).
[CrossRef]

Dodel, G.

Dransfeld, K.

W. Arnold, S. Hunklinger, and K. Dransfeld, "Influence of optical absorption on the van der Waals interaction between solids," Phys. Rev. B 19, 6049-6056 (1979).
[CrossRef]

Fischbach, E.

R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepanenko, "Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions," Ann. Phys. 318, 37-80 (2005).
[CrossRef]

Gmitter, T.

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, "Unusually low surface-recombination velocity on silicon and germanium surfaces," Phys. Rev. Lett. 57, 249-252 (1986).
[CrossRef] [PubMed]

Golestanian, R.

M. Kardar and R. Golestanian, "The "friction" of vacuum and other fluctuation-induced forces," Rev. Mod. Phys. 71, 1233-1245 (1999).
[CrossRef]

Holzhauer, E.

Hunklinger, S.

W. Arnold, S. Hunklinger, and K. Dransfeld, "Influence of optical absorption on the van der Waals interaction between solids," Phys. Rev. B 19, 6049-6056 (1979).
[CrossRef]

Kardar, M.

M. Kardar and R. Golestanian, "The "friction" of vacuum and other fluctuation-induced forces," Rev. Mod. Phys. 71, 1233-1245 (1999).
[CrossRef]

Klimchitskaya, G. L.

R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepanenko, "Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions," Ann. Phys. 318, 37-80 (2005).
[CrossRef]

Krause, D. E.

R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepanenko, "Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions," Ann. Phys. 318, 37-80 (2005).
[CrossRef]

López, D.

R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepanenko, "Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions," Ann. Phys. 318, 37-80 (2005).
[CrossRef]

Maradudin, A. A.

A. A. Maradudin and P. Mazur, "Effects of surface roughness on the van der Waals force between macroscopic bodies," Phys. Rev. B 22, 1677-1686 (1980).
[CrossRef]

Mazur, P.

A. A. Maradudin and P. Mazur, "Effects of surface roughness on the van der Waals force between macroscopic bodies," Phys. Rev. B 22, 1677-1686 (1980).
[CrossRef]

Mohideen, U.

M. Bordag, U. Mohideen, and V. M. Mostepanenko, "New developments in the Casimir effect," Phys. Rep. 303, 1-205 (2001).
[CrossRef]

Mostepanenko, V. M.

R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepanenko, "Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions," Ann. Phys. 318, 37-80 (2005).
[CrossRef]

M. Bordag, U. Mohideen, and V. M. Mostepanenko, "New developments in the Casimir effect," Phys. Rep. 303, 1-205 (2001).
[CrossRef]

Salzmann, H.

Theurer, A.

Vogel, T.

Yablonovitch, E.

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, "Unusually low surface-recombination velocity on silicon and germanium surfaces," Phys. Rev. Lett. 57, 249-252 (1986).
[CrossRef] [PubMed]

Ann. Phys. (1)

R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepanenko, "Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions," Ann. Phys. 318, 37-80 (2005).
[CrossRef]

Appl. Opt. (1)

Phys. Rep. (1)

M. Bordag, U. Mohideen, and V. M. Mostepanenko, "New developments in the Casimir effect," Phys. Rep. 303, 1-205 (2001).
[CrossRef]

Phys. Rev. B (2)

W. Arnold, S. Hunklinger, and K. Dransfeld, "Influence of optical absorption on the van der Waals interaction between solids," Phys. Rev. B 19, 6049-6056 (1979).
[CrossRef]

A. A. Maradudin and P. Mazur, "Effects of surface roughness on the van der Waals force between macroscopic bodies," Phys. Rev. B 22, 1677-1686 (1980).
[CrossRef]

Phys. Rev. Lett. (1)

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, "Unusually low surface-recombination velocity on silicon and germanium surfaces," Phys. Rev. Lett. 57, 249-252 (1986).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. Kardar and R. Golestanian, "The "friction" of vacuum and other fluctuation-induced forces," Rev. Mod. Phys. 71, 1233-1245 (1999).
[CrossRef]

Other (17)

V. A. Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University Press, Cambridge, 2005).
[CrossRef]

E. V. Blagov, G. L. Klimchitskaya, and V. M. Mostepanenko, "Van der Waals interaction between microparticle and uniaxial crystal with application to hydrogen atoms and multiwall carbon nanotubes," Phys. Rev. B 71, 235401-1-12 (2005).
[CrossRef]

H. Oberst, Y. Tashiro, K. Shimizu, and F. Shimizu, "Quantum reflection of He; on silicon," Phys. Rev. A 71, 052901-1-8 (2005).
[CrossRef]

B. S. Stipe, M. J. Mamin, T. D. Stowe, T. W. Kenny, and D. Rugar, "Noncontact friction and force fluctuations between closely spaced bodies," Phys. Rev. Lett. 87, 096801-1-4 (2001).
[CrossRef] [PubMed]

E. Buks and M. L. Roukes, "Stiction, adhesion energy, and the Casimir effect in micromechanical systems," Phys. Rev. B 63, 033402-1-4 (2001).
[CrossRef]

R. S. Decca, E. Fischbach, G. L. Klimchitskaya, D. López, D. E. Krause, and V. M. Mostepanenko, "Improved test of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements," Phys. Rev. D 68, 116003-1-15 (2003).
[CrossRef]

R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepanenko, "Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates," arXiv: hepph/ 0703290; to appear in Phys. Rev. D.

J. Mahanty and B. W. Ninham, Dispersion Forces (Academic Press, New York, 1976).

P. W. Milonni, The Quantum Vacuum (Academic Press, Boston, 1994).

J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, "Measurement of the temperature dependence in the Casimir-Polder force," Phys. Rev. Lett. 98, 063201-1-4 (2007).
[CrossRef] [PubMed]

E. D. Palik (ed.), Handbook of Optical Constants of Solids (Academic, New York, 1985).

E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics. II (Pergamon, Oxford, 1980).

B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, "Thermal quantum field theory and the Casimir interaction between dielectrics," Phys. Rev. D 72, 085009-1-20 (2005).
[CrossRef]

F. Chen, U. Mohideen, G. L. Klimchitskaya, and V. M. Mostepanenko, "Investigation of the Casimir force between metal and semiconductor test bodies," Phys. Rev. A 72, 020101(R)-1-4 (2005).
[CrossRef]

F. Chen, U. Mohideen, G. L. Klimchitskaya, and V. M. Mostepanenko, "Experimental test for the conductivity properties from the Casimir force between metal and semiconductor," Phys. Rev. A 74, 022103-1-14 (2006).
[CrossRef]

F. Chen, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen, "Demonstration of the difference in the Casimir force for samples with different charge-carrier densities," Phys. Rev. Lett. 97, 170402-1-4 (2006).
[CrossRef] [PubMed]

S. G. Rabinovich, Measurement Errors and Uncertainties (Springer, New York, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. Light from a 514 nm Ar laser is chopped into 5 ms pulses and irradiates a Si membrane leading to the modulation of the dispersion force between the membrane and a sphere (see text for further details).

Fig. 2.
Fig. 2.

Differences of dispersion forces with laser on and off. Experimentally measured difference data are shown as dots. The solid line represents dispersion force difference computed for Si with finite static dielectric permittivity. The force difference computed including the dc conductivity of Si in the absence of laser light is shown by the dashed line.

Fig. 3.
Fig. 3.

Dielectric permittivity of Si along the imaginary frequency axis. Solid line shows εSi l in the presence of laser light, and the dashed line shows εSi in the absence of light when Si has a finite static permittivity. ε ˜ Si which includes the dc conductivity in the absence of light is given by the dotted line. ξ1 is the first Matsubara frequency at T = 300K.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ F tot ( z ) = c ( z ) [ ( V l V 0 l ) 2 ( V V 0 ) 2 ] + Δ F d ( z ) .
ε ˜ S i ( i ξ ) = ε S i ( i ξ ) + ( ω ˜ p ( p ) ) 2 [ ξ ( ξ + γ ( p ) ) ] ,
ε l S i ( i ξ ) = ε S i ( i ξ ) + ( ω p ( e ) ) 2 [ ξ ( ξ + γ ( e ) ) ] + ( ω p ( p ) ) 2 [ ξ ( ξ + γ ( p ) ) ] .

Metrics