Abstract

We present novel designs and demonstrate a fabrication platform for electrically driven lasers based on high quality-factor photonic crystal cavities realized in mid-infrared quantum cascade laser material. The structures are based on deep-etched ridges with their sides perforated with photonic crystal lattice, using focused ion beam milling. In this way, a photonic gap is opened for the emitted TM polarized light. Detailed modeling and optimization of the optical properties of the lasers are presented, and their application in optofluidics is investigated. Porous photonic crystal quantum cascade lasers have potential for on-chip, intracavity chemical and biological sensing in fluids using mid infrared spectroscopy. These lasers can also be frequency tuned over a large spectral range by introducing transparent liquid in the photonic crystal holes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers," Phys. Today 55, 34 (2002)
  2. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Reports on Progress in Physics. 64, 1533 (2001)
    [CrossRef]
  3. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, "High power mid-infrared (λ~5μm) quantum cascade lasers operating above room temperature," Appl. Phys. Lett. 68, 3680 (1996).
    [CrossRef]
  4. S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4μm," Appl. Phys. Lett. 86, 041109 (2005).
    [CrossRef]
  5. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006).
    [CrossRef]
  6. T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
    [CrossRef]
  7. S. G. Johnson, S. Fan, A. Mekis and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388 (2001)
    [CrossRef]
  8. J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2002)
    [CrossRef]
  9. J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850 (2002)
    [CrossRef]
  10. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670 (2002)
    [PubMed]
  11. K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho and C. Gmachl, "Experimental demonstration of a high-quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003)
    [CrossRef]
  12. Y. Akahane, T. Asano, B. S. Song and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003)
    [CrossRef] [PubMed]
  13. D. Englund, I. Fushman and J. Vučković, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961 (2005)
    [CrossRef] [PubMed]
  14. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
    [CrossRef]
  15. T. Asano, B. S. Song and S. Noda, "Analysis of the experimental Q factors (similar to 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996 (2006)
    [CrossRef] [PubMed]
  16. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
    [CrossRef] [PubMed]
  17. H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee and J. S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883 (2002)
    [CrossRef]
  18. M. Lončar, T. Yoshie, A. Scherer, P. Gogna and Y. M. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680 (2002)
    [CrossRef]
  19. T. Yoshie, M. Lončar, A. Scherer and Y. Qiu, "High frequency oscillation in photonic crystal nanlasers," Appl. Phys. Lett. 84, 3543 (2004).
    [CrossRef]
  20. H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484 (2006)
    [CrossRef]
  21. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444 (2004)
    [CrossRef] [PubMed]
  22. A. Talneau, L. LeGratiet, J. L. Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, "High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection," Appl. Phys. Lett. 85, 1913 (2004)
    [CrossRef]
  23. Demetri Psaltis, Stephen R. Quake, and Changhuei Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381 (2006)
    [CrossRef] [PubMed]
  24. L. Diehl, B. G. Lee, P. Behroozi, M. Lončar, M. A. Belkin, F. Capasso, T. Allen, D. Hofstetter, M. Beck and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers," Opt. Express 14, 11660 (2006).
    [CrossRef] [PubMed]
  25. M. Lončar, A. Scherer and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648 (2003)
    [CrossRef]
  26. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004)
    [CrossRef] [PubMed]
  27. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006)
    [CrossRef] [PubMed]
  28. S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999).
    [CrossRef]
  29. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374 (2003).
    [CrossRef] [PubMed]
  30. K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4164 (2004).
    [CrossRef]
  31. C. L. Walker, C. D. Farmer, C. R. Stanley and C. N. Ironside, "Progress towards photonic crystal quantum cascade laser," IEE Proc. Optoelectronics 151, 502 (204).
    [CrossRef]
  32. L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, "Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960 (2005)
    [CrossRef] [PubMed]
  33. S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel and J. Seufert, "Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,", Appl. Phys. Lett. 89, 191113 (2006).
    [CrossRef]
  34. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electtron. 27, 1332 (1991).
    [CrossRef]
  35. Ph. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high-Q small-V microcavities," IEEE J. Quantum Electron. 39, 1430 (2003)
    [CrossRef]
  36. J. Melngailis, "Focused ion-beam technology and applications," J. Vac. Sci. Tech. B 5, 469 (1987).
    [CrossRef]
  37. M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L. Tian, S. Yu and J. M. Rorison, "Focused ion beam-based fabrication of nanostructured photonic devices," IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
    [CrossRef]
  38. A. Chelnokov, K. Wang, S. Rowson, P. Garoche, J. M. Lourtioz, "Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon," Appl. Phys. Lett. 77, 2943 (2000).
    [CrossRef]
  39. J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, U. Gosele, "Three-dimensional macroporous silicon photonic crystal with large photonic bandgap," Appl. Phys. Lett. 86, 011101 (2005).
    [CrossRef]
  40. M. Lončar, B. G. Lee, M. Troccoli, L. Diehl, F. Capasso, M. Giovannini, J. Faist, "Novel photonic crystal quantum cascade laser platform," CLEO 2006.
  41. L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, "Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors," Appl. Phys. Lett. 77, 1241 (2000).
    [CrossRef]
  42. K. E. Zinoviev, C. Dominguez, A. Vila, "Diffraction grating couplers milled in Si3N4 rib waveguides with a focused ion beam," Opt. Express 13, 8618 (2005).
    [CrossRef] [PubMed]
  43. Y. Fu and N. K. A. Bryan, "Investigation of physical properties of quartz after focused ion beam bombardment," Appl. Phys. B 80, 581 (2005).
    [CrossRef]
  44. M. L. Adams, M. Lončar, A. Scherer and Y. M. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 (2005).
    [CrossRef]
  45. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093 (2004)
    [CrossRef] [PubMed]
  46. J. Topolancik, P. Bhattacharya, J. Sabarinathan and P. C. Yu, "Fluid detection with photonic crystal-based multichannel waveguides," Appl. Phys. Lett. 82, 1143 (2003).
    [CrossRef]
  47. H. Kurt and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005).
    [CrossRef]
  48. D. Erickson, T. Rockwood, T. Emery, A. Scherer and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59 (2006)
    [CrossRef] [PubMed]
  49. C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, "Resonant tunneling in quantum cascade lasers," IEEE J. Quantum Electron. 34, 9 (1998).
    [CrossRef]
  50. J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco and C. F. Gmachl, „Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2006).
    [CrossRef]
  51. J. E. Bertie and K. H. Michaelian, "Comparison of infrared and Raman wave numbers of neat molecular liquids: which is the correct infrared wave number to use?," J. Chem. Phys. 109, 6764 (1998)
    [CrossRef]

2006 (10)

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006).
[CrossRef]

H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484 (2006)
[CrossRef]

Demetri Psaltis, Stephen R. Quake, and Changhuei Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381 (2006)
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006)
[CrossRef] [PubMed]

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel and J. Seufert, "Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,", Appl. Phys. Lett. 89, 191113 (2006).
[CrossRef]

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco and C. F. Gmachl, „Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2006).
[CrossRef]

D. Erickson, T. Rockwood, T. Emery, A. Scherer and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59 (2006)
[CrossRef] [PubMed]

T. Asano, B. S. Song and S. Noda, "Analysis of the experimental Q factors (similar to 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996 (2006)
[CrossRef] [PubMed]

L. Diehl, B. G. Lee, P. Behroozi, M. Lončar, M. A. Belkin, F. Capasso, T. Allen, D. Hofstetter, M. Beck and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers," Opt. Express 14, 11660 (2006).
[CrossRef] [PubMed]

2005 (9)

D. Englund, I. Fushman and J. Vučković, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961 (2005)
[CrossRef] [PubMed]

K. E. Zinoviev, C. Dominguez, A. Vila, "Diffraction grating couplers milled in Si3N4 rib waveguides with a focused ion beam," Opt. Express 13, 8618 (2005).
[CrossRef] [PubMed]

L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, "Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960 (2005)
[CrossRef] [PubMed]

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L. Tian, S. Yu and J. M. Rorison, "Focused ion beam-based fabrication of nanostructured photonic devices," IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[CrossRef]

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, U. Gosele, "Three-dimensional macroporous silicon photonic crystal with large photonic bandgap," Appl. Phys. Lett. 86, 011101 (2005).
[CrossRef]

Y. Fu and N. K. A. Bryan, "Investigation of physical properties of quartz after focused ion beam bombardment," Appl. Phys. B 80, 581 (2005).
[CrossRef]

M. L. Adams, M. Lončar, A. Scherer and Y. M. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 (2005).
[CrossRef]

H. Kurt and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005).
[CrossRef]

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4μm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

2004 (6)

T. Yoshie, M. Lončar, A. Scherer and Y. Qiu, "High frequency oscillation in photonic crystal nanlasers," Appl. Phys. Lett. 84, 3543 (2004).
[CrossRef]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444 (2004)
[CrossRef] [PubMed]

A. Talneau, L. LeGratiet, J. L. Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, "High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection," Appl. Phys. Lett. 85, 1913 (2004)
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004)
[CrossRef] [PubMed]

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4164 (2004).
[CrossRef]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093 (2004)
[CrossRef] [PubMed]

2003 (6)

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374 (2003).
[CrossRef] [PubMed]

Ph. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high-Q small-V microcavities," IEEE J. Quantum Electron. 39, 1430 (2003)
[CrossRef]

J. Topolancik, P. Bhattacharya, J. Sabarinathan and P. C. Yu, "Fluid detection with photonic crystal-based multichannel waveguides," Appl. Phys. Lett. 82, 1143 (2003).
[CrossRef]

M. Lončar, A. Scherer and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648 (2003)
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho and C. Gmachl, "Experimental demonstration of a high-quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003)
[CrossRef]

Y. Akahane, T. Asano, B. S. Song and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003)
[CrossRef] [PubMed]

2002 (6)

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers," Phys. Today 55, 34 (2002)

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2002)
[CrossRef]

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850 (2002)
[CrossRef]

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee and J. S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883 (2002)
[CrossRef]

M. Lončar, T. Yoshie, A. Scherer, P. Gogna and Y. M. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680 (2002)
[CrossRef]

K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670 (2002)
[PubMed]

2001 (3)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Reports on Progress in Physics. 64, 1533 (2001)
[CrossRef]

T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
[CrossRef]

S. G. Johnson, S. Fan, A. Mekis and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388 (2001)
[CrossRef]

2000 (2)

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, "Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors," Appl. Phys. Lett. 77, 1241 (2000).
[CrossRef]

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, J. M. Lourtioz, "Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon," Appl. Phys. Lett. 77, 2943 (2000).
[CrossRef]

1999 (2)

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

1998 (2)

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, "Resonant tunneling in quantum cascade lasers," IEEE J. Quantum Electron. 34, 9 (1998).
[CrossRef]

J. E. Bertie and K. H. Michaelian, "Comparison of infrared and Raman wave numbers of neat molecular liquids: which is the correct infrared wave number to use?," J. Chem. Phys. 109, 6764 (1998)
[CrossRef]

1996 (1)

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, "High power mid-infrared (λ~5μm) quantum cascade lasers operating above room temperature," Appl. Phys. Lett. 68, 3680 (1996).
[CrossRef]

1991 (1)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electtron. 27, 1332 (1991).
[CrossRef]

1987 (1)

J. Melngailis, "Focused ion-beam technology and applications," J. Vac. Sci. Tech. B 5, 469 (1987).
[CrossRef]

Adams, M. L.

M. L. Adams, M. Lončar, A. Scherer and Y. M. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 (2005).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003)
[CrossRef] [PubMed]

Allen, T.

Altug, H.

H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484 (2006)
[CrossRef]

Anand, S.

A. Talneau, L. LeGratiet, J. L. Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, "High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection," Appl. Phys. Lett. 85, 1913 (2004)
[CrossRef]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006)
[CrossRef] [PubMed]

Asano, T.

T. Asano, B. S. Song and S. Noda, "Analysis of the experimental Q factors (similar to 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996 (2006)
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003)
[CrossRef] [PubMed]

Badolato, A.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006)
[CrossRef] [PubMed]

Baek, J. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444 (2004)
[CrossRef] [PubMed]

Baillargeon, J. N.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, "High power mid-infrared (λ~5μm) quantum cascade lasers operating above room temperature," Appl. Phys. Lett. 68, 3680 (1996).
[CrossRef]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho and C. Gmachl, "Experimental demonstration of a high-quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003)
[CrossRef]

Beck, M.

Behroozi, P.

Belkin, M. A.

Berrier, A.

A. Talneau, L. LeGratiet, J. L. Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, "High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection," Appl. Phys. Lett. 85, 1913 (2004)
[CrossRef]

Bertagnolli, E.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, "Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors," Appl. Phys. Lett. 77, 1241 (2000).
[CrossRef]

Bertie, J. E.

J. E. Bertie and K. H. Michaelian, "Comparison of infrared and Raman wave numbers of neat molecular liquids: which is the correct infrared wave number to use?," J. Chem. Phys. 109, 6764 (1998)
[CrossRef]

Bhattacharya, P.

J. Topolancik, P. Bhattacharya, J. Sabarinathan and P. C. Yu, "Fluid detection with photonic crystal-based multichannel waveguides," Appl. Phys. Lett. 82, 1143 (2003).
[CrossRef]

Blaser, S.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4μm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

Bonetti, Y.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4μm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

Bour, D.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006).
[CrossRef]

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006)
[CrossRef] [PubMed]

Bryan, N. K. A.

Y. Fu and N. K. A. Bryan, "Investigation of physical properties of quartz after focused ion beam bombardment," Appl. Phys. B 80, 581 (2005).
[CrossRef]

Capasso, F.

L. Diehl, B. G. Lee, P. Behroozi, M. Lončar, M. A. Belkin, F. Capasso, T. Allen, D. Hofstetter, M. Beck and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers," Opt. Express 14, 11660 (2006).
[CrossRef] [PubMed]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006).
[CrossRef]

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4164 (2004).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374 (2003).
[CrossRef] [PubMed]

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers," Phys. Today 55, 34 (2002)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Reports on Progress in Physics. 64, 1533 (2001)
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, "Resonant tunneling in quantum cascade lasers," IEEE J. Quantum Electron. 34, 9 (1998).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, "High power mid-infrared (λ~5μm) quantum cascade lasers operating above room temperature," Appl. Phys. Lett. 68, 3680 (1996).
[CrossRef]

Chelnokov, A.

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, J. M. Lourtioz, "Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon," Appl. Phys. Lett. 77, 2943 (2000).
[CrossRef]

Chen, H.

T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
[CrossRef]

Chen, J. X.

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho and C. Gmachl, "Experimental demonstration of a high-quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003)
[CrossRef]

Chen, J. Z.

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco and C. F. Gmachl, „Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2006).
[CrossRef]

Cho, A. Y.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4164 (2004).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho and C. Gmachl, "Experimental demonstration of a high-quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003)
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374 (2003).
[CrossRef] [PubMed]

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers," Phys. Today 55, 34 (2002)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Reports on Progress in Physics. 64, 1533 (2001)
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, "Resonant tunneling in quantum cascade lasers," IEEE J. Quantum Electron. 34, 9 (1998).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, "High power mid-infrared (λ~5μm) quantum cascade lasers operating above room temperature," Appl. Phys. Lett. 68, 3680 (1996).
[CrossRef]

Choi, Y. S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006)
[CrossRef] [PubMed]

Chow, E.

Chu, S. G.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, "High power mid-infrared (λ~5μm) quantum cascade lasers operating above room temperature," Appl. Phys. Lett. 68, 3680 (1996).
[CrossRef]

Citrin, D. S.

H. Kurt and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005).
[CrossRef]

Colombelli, R.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4164 (2004).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374 (2003).
[CrossRef] [PubMed]

Cortaberria Sanz, D.

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L. Tian, S. Yu and J. M. Rorison, "Focused ion beam-based fabrication of nanostructured photonic devices," IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[CrossRef]

Corzine, S.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006).
[CrossRef]

Cryan, M. J.

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L. Tian, S. Yu and J. M. Rorison, "Focused ion beam-based fabrication of nanostructured photonic devices," IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

Deppe, D.

T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004)
[CrossRef] [PubMed]

Diehl, L.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006).
[CrossRef]

L. Diehl, B. G. Lee, P. Behroozi, M. Lončar, M. A. Belkin, F. Capasso, T. Allen, D. Hofstetter, M. Beck and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers," Opt. Express 14, 11660 (2006).
[CrossRef] [PubMed]

Dominguez, C.

Dunbar, L. A.

Eli, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004)
[CrossRef] [PubMed]

Emery, T.

Englund, D.

H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484 (2006)
[CrossRef]

D. Englund, I. Fushman and J. Vučković, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961 (2005)
[CrossRef] [PubMed]

Erickson, D.

Faist, J.

L. Diehl, B. G. Lee, P. Behroozi, M. Lončar, M. A. Belkin, F. Capasso, T. Allen, D. Hofstetter, M. Beck and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers," Opt. Express 14, 11660 (2006).
[CrossRef] [PubMed]

L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, "Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960 (2005)
[CrossRef] [PubMed]

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4μm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, "Resonant tunneling in quantum cascade lasers," IEEE J. Quantum Electron. 34, 9 (1998).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, "High power mid-infrared (λ~5μm) quantum cascade lasers operating above room temperature," Appl. Phys. Lett. 68, 3680 (1996).
[CrossRef]

Fan, S.

S. G. Johnson, S. Fan, A. Mekis and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388 (2001)
[CrossRef]

Fan, S. H.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Farmer, C. D.

C. L. Walker, C. D. Farmer, C. R. Stanley and C. N. Ironside, "Progress towards photonic crystal quantum cascade laser," IEE Proc. Optoelectronics 151, 502 (204).
[CrossRef]

Ferrini, R.

Finger, N.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, "Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors," Appl. Phys. Lett. 77, 1241 (2000).
[CrossRef]

Florez, L. T.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electtron. 27, 1332 (1991).
[CrossRef]

Forchel, A.

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel and J. Seufert, "Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,", Appl. Phys. Lett. 89, 191113 (2006).
[CrossRef]

Fu, Y.

Y. Fu and N. K. A. Bryan, "Investigation of physical properties of quartz after focused ion beam bombardment," Appl. Phys. B 80, 581 (2005).
[CrossRef]

Fushman, I.

Garoche, P.

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, J. M. Lourtioz, "Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon," Appl. Phys. Lett. 77, 2943 (2000).
[CrossRef]

Gentner, J. L.

A. Talneau, L. LeGratiet, J. L. Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, "High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection," Appl. Phys. Lett. 85, 1913 (2004)
[CrossRef]

Gianordoli, S.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, "Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors," Appl. Phys. Lett. 77, 1241 (2000).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004)
[CrossRef] [PubMed]

Giovannini, M.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4μm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, "Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960 (2005)
[CrossRef] [PubMed]

Girolami, G.

Gmachl, C.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4164 (2004).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho and C. Gmachl, "Experimental demonstration of a high-quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003)
[CrossRef]

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers," Phys. Today 55, 34 (2002)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Reports on Progress in Physics. 64, 1533 (2001)
[CrossRef]

Gmachl, C. F.

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco and C. F. Gmachl, „Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2006).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374 (2003).
[CrossRef] [PubMed]

Gogna, P.

M. Lončar, T. Yoshie, A. Scherer, P. Gogna and Y. M. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680 (2002)
[CrossRef]

Gornig, E.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, "Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors," Appl. Phys. Lett. 77, 1241 (2000).
[CrossRef]

Gosele, U.

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, U. Gosele, "Three-dimensional macroporous silicon photonic crystal with large photonic bandgap," Appl. Phys. Lett. 86, 011101 (2005).
[CrossRef]

Grot, A.

Harbison, J. P.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electtron. 27, 1332 (1991).
[CrossRef]

Heard, P. J.

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L. Tian, S. Yu and J. M. Rorison, "Focused ion beam-based fabrication of nanostructured photonic devices," IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[CrossRef]

Heinrich, J.

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel and J. Seufert, "Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,", Appl. Phys. Lett. 89, 191113 (2006).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004)
[CrossRef] [PubMed]

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006)
[CrossRef] [PubMed]

Hill, M.

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L. Tian, S. Yu and J. M. Rorison, "Focused ion beam-based fabrication of nanostructured photonic devices," IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[CrossRef]

Hillebrand, R.

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, U. Gosele, "Three-dimensional macroporous silicon photonic crystal with large photonic bandgap," Appl. Phys. Lett. 86, 011101 (2005).
[CrossRef]

Höfler, G.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006).
[CrossRef]

Hofling, S.

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel and J. Seufert, "Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,", Appl. Phys. Lett. 89, 191113 (2006).
[CrossRef]

Hofmann, H.

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel and J. Seufert, "Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,", Appl. Phys. Lett. 89, 191113 (2006).
[CrossRef]

Hofstetter, D.

Houdre, R.

Hoyler, N.

Hu, E. L.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006)
[CrossRef] [PubMed]

Hugonin, J. P.

Ph. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high-Q small-V microcavities," IEEE J. Quantum Electron. 39, 1430 (2003)
[CrossRef]

Hutchinson, A. L.

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, "Resonant tunneling in quantum cascade lasers," IEEE J. Quantum Electron. 34, 9 (1998).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, "High power mid-infrared (λ~5μm) quantum cascade lasers operating above room temperature," Appl. Phys. Lett. 68, 3680 (1996).
[CrossRef]

Hvozdara, L.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4μm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, "Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors," Appl. Phys. Lett. 77, 1241 (2000).
[CrossRef]

Hwang, J. K.

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee and J. S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883 (2002)
[CrossRef]

Ironside, C. N.

C. L. Walker, C. D. Farmer, C. R. Stanley and C. N. Ironside, "Progress towards photonic crystal quantum cascade laser," IEE Proc. Optoelectronics 151, 502 (204).
[CrossRef]

Ivanov, P. S.

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L. Tian, S. Yu and J. M. Rorison, "Focused ion beam-based fabrication of nanostructured photonic devices," IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[CrossRef]

Jewell, J. L.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electtron. 27, 1332 (1991).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, S. Fan, A. Mekis and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388 (2001)
[CrossRef]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Johnson, S. G.

S. G. Johnson, S. Fan, A. Mekis and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388 (2001)
[CrossRef]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Ju, Y. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444 (2004)
[CrossRef] [PubMed]

Kamp, M.

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel and J. Seufert, "Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,", Appl. Phys. Lett. 89, 191113 (2006).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004)
[CrossRef] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

Kim, J. S.

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee and J. S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883 (2002)
[CrossRef]

Kim, S. B.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444 (2004)
[CrossRef] [PubMed]

Kim, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444 (2004)
[CrossRef] [PubMed]

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee and J. S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883 (2002)
[CrossRef]

Kolodziejski, L. A.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
[CrossRef]

Kurt, H.

H. Kurt and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005).
[CrossRef]

Kwon, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444 (2004)
[CrossRef] [PubMed]

Lalanne, Ph.

Ph. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high-Q small-V microcavities," IEEE J. Quantum Electron. 39, 1430 (2003)
[CrossRef]

Lee, B. G.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444 (2004)
[CrossRef] [PubMed]

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee and J. S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883 (2002)
[CrossRef]

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electtron. 27, 1332 (1991).
[CrossRef]

LeGratiet, L.

A. Talneau, L. LeGratiet, J. L. Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, "High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection," Appl. Phys. Lett. 85, 1913 (2004)
[CrossRef]

Liu, Z.

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco and C. F. Gmachl, „Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2006).
[CrossRef]

Loncar, M.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006).
[CrossRef]

L. Diehl, B. G. Lee, P. Behroozi, M. Lončar, M. A. Belkin, F. Capasso, T. Allen, D. Hofstetter, M. Beck and J. Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers," Opt. Express 14, 11660 (2006).
[CrossRef] [PubMed]

M. L. Adams, M. Lončar, A. Scherer and Y. M. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 (2005).
[CrossRef]

T. Yoshie, M. Lončar, A. Scherer and Y. Qiu, "High frequency oscillation in photonic crystal nanlasers," Appl. Phys. Lett. 84, 3543 (2004).
[CrossRef]

M. Lončar, A. Scherer and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648 (2003)
[CrossRef]

M. Lončar, T. Yoshie, A. Scherer, P. Gogna and Y. M. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680 (2002)
[CrossRef]

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2002)
[CrossRef]

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850 (2002)
[CrossRef]

Lourtioz, J. M.

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, J. M. Lourtioz, "Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon," Appl. Phys. Lett. 77, 2943 (2000).
[CrossRef]

Lugstein, A.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, "Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors," Appl. Phys. Lett. 77, 1241 (2000).
[CrossRef]

Mabuchi, H.

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2002)
[CrossRef]

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850 (2002)
[CrossRef]

Mekis, A.

S. G. Johnson, S. Fan, A. Mekis and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388 (2001)
[CrossRef]

Melngailis, J.

J. Melngailis, "Focused ion-beam technology and applications," J. Vac. Sci. Tech. B 5, 469 (1987).
[CrossRef]

Michaelian, K. H.

J. E. Bertie and K. H. Michaelian, "Comparison of infrared and Raman wave numbers of neat molecular liquids: which is the correct infrared wave number to use?," J. Chem. Phys. 109, 6764 (1998)
[CrossRef]

Mirkarimi, L. W.

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
[CrossRef]

Moreau, V.

Muller, A.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4μm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

Mulot, M.

A. Talneau, L. LeGratiet, J. L. Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, "High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection," Appl. Phys. Lett. 85, 1913 (2004)
[CrossRef]

Noda, S.

T. Asano, B. S. Song and S. Noda, "Analysis of the experimental Q factors (similar to 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996 (2006)
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003)
[CrossRef] [PubMed]

Notomi, M.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

Olivier, S.

A. Talneau, L. LeGratiet, J. L. Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, "High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection," Appl. Phys. Lett. 85, 1913 (2004)
[CrossRef]

Painter, O.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4164 (2004).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho and C. Gmachl, "Experimental demonstration of a high-quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003)
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374 (2003).
[CrossRef] [PubMed]

K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670 (2002)
[PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

Park, H. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444 (2004)
[CrossRef] [PubMed]

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee and J. S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883 (2002)
[CrossRef]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006)
[CrossRef] [PubMed]

Psaltis, D.

Qiu, Y.

T. Yoshie, M. Lončar, A. Scherer and Y. Qiu, "High frequency oscillation in photonic crystal nanlasers," Appl. Phys. Lett. 84, 3543 (2004).
[CrossRef]

M. Lončar, A. Scherer and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648 (2003)
[CrossRef]

Qiu, Y. M.

M. L. Adams, M. Lončar, A. Scherer and Y. M. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 (2005).
[CrossRef]

M. Lončar, T. Yoshie, A. Scherer, P. Gogna and Y. M. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680 (2002)
[CrossRef]

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006)
[CrossRef] [PubMed]

Reithmaier, J. P.

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel and J. Seufert, "Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,", Appl. Phys. Lett. 89, 191113 (2006).
[CrossRef]

Rockwood, T.

Rorison, J. M.

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L. Tian, S. Yu and J. M. Rorison, "Focused ion beam-based fabrication of nanostructured photonic devices," IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[CrossRef]

Rowson, S.

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, J. M. Lourtioz, "Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon," Appl. Phys. Lett. 77, 2943 (2000).
[CrossRef]

Rumala, Y. S.

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco and C. F. Gmachl, „Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2006).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004)
[CrossRef] [PubMed]

Ryu, H. Y.

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee and J. S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883 (2002)
[CrossRef]

Sabarinathan, J.

J. Topolancik, P. Bhattacharya, J. Sabarinathan and P. C. Yu, "Fluid detection with photonic crystal-based multichannel waveguides," Appl. Phys. Lett. 82, 1143 (2003).
[CrossRef]

Scalari, G.

Scherer, A.

D. Erickson, T. Rockwood, T. Emery, A. Scherer and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59 (2006)
[CrossRef] [PubMed]

M. L. Adams, M. Lončar, A. Scherer and Y. M. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 (2005).
[CrossRef]

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, U. Gosele, "Three-dimensional macroporous silicon photonic crystal with large photonic bandgap," Appl. Phys. Lett. 86, 011101 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004)
[CrossRef] [PubMed]

T. Yoshie, M. Lončar, A. Scherer and Y. Qiu, "High frequency oscillation in photonic crystal nanlasers," Appl. Phys. Lett. 84, 3543 (2004).
[CrossRef]

M. Lončar, A. Scherer and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648 (2003)
[CrossRef]

M. Lončar, T. Yoshie, A. Scherer, P. Gogna and Y. M. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680 (2002)
[CrossRef]

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2002)
[CrossRef]

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850 (2002)
[CrossRef]

T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electtron. 27, 1332 (1991).
[CrossRef]

Schilling, J.

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, U. Gosele, "Three-dimensional macroporous silicon photonic crystal with large photonic bandgap," Appl. Phys. Lett. 86, 011101 (2005).
[CrossRef]

Schrenk, W.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, "Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors," Appl. Phys. Lett. 77, 1241 (2000).
[CrossRef]

Sergent, A. M.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4164 (2004).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374 (2003).
[CrossRef] [PubMed]

Seufert, J.

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel and J. Seufert, "Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,", Appl. Phys. Lett. 89, 191113 (2006).
[CrossRef]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004)
[CrossRef] [PubMed]

Shinaya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
[CrossRef]

Sigalas, M.

Sirigu, L.

Sirtori, C.

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, "Resonant tunneling in quantum cascade lasers," IEEE J. Quantum Electron. 34, 9 (1998).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, "High power mid-infrared (λ~5μm) quantum cascade lasers operating above room temperature," Appl. Phys. Lett. 68, 3680 (1996).
[CrossRef]

Sivco, D. L.

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco and C. F. Gmachl, „Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2006).
[CrossRef]

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4164 (2004).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374 (2003).
[CrossRef] [PubMed]

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers," Phys. Today 55, 34 (2002)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Reports on Progress in Physics. 64, 1533 (2001)
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, "Resonant tunneling in quantum cascade lasers," IEEE J. Quantum Electron. 34, 9 (1998).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, "High power mid-infrared (λ~5μm) quantum cascade lasers operating above room temperature," Appl. Phys. Lett. 68, 3680 (1996).
[CrossRef]

Song, B. S.

T. Asano, B. S. Song and S. Noda, "Analysis of the experimental Q factors (similar to 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996 (2006)
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003)
[CrossRef] [PubMed]

Srinivasan, K.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4164 (2004).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho and C. Gmachl, "Experimental demonstration of a high-quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003)
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374 (2003).
[CrossRef] [PubMed]

K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670 (2002)
[PubMed]

Stanley, C. R.

C. L. Walker, C. D. Farmer, C. R. Stanley and C. N. Ironside, "Progress towards photonic crystal quantum cascade laser," IEE Proc. Optoelectronics 151, 502 (204).
[CrossRef]

Strasser, G.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, "Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors," Appl. Phys. Lett. 77, 1241 (2000).
[CrossRef]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006)
[CrossRef] [PubMed]

Stupian, G.

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, U. Gosele, "Three-dimensional macroporous silicon photonic crystal with large photonic bandgap," Appl. Phys. Lett. 86, 011101 (2005).
[CrossRef]

Talneau, A.

A. Talneau, L. LeGratiet, J. L. Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, "High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection," Appl. Phys. Lett. 85, 1913 (2004)
[CrossRef]

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
[CrossRef]

Tennant, D. M.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4164 (2004).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374 (2003).
[CrossRef] [PubMed]

Tian, L.

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L. Tian, S. Yu and J. M. Rorison, "Focused ion beam-based fabrication of nanostructured photonic devices," IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[CrossRef]

Topolancik, J.

J. Topolancik, P. Bhattacharya, J. Sabarinathan and P. C. Yu, "Fluid detection with photonic crystal-based multichannel waveguides," Appl. Phys. Lett. 82, 1143 (2003).
[CrossRef]

Troccoli, M.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006).
[CrossRef]

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4164 (2004).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374 (2003).
[CrossRef] [PubMed]

Unterrainer, K.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, "Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors," Appl. Phys. Lett. 77, 1241 (2000).
[CrossRef]

Vila, A.

Villeneuve, P. R.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Vuckovic, J.

H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484 (2006)
[CrossRef]

D. Englund, I. Fushman and J. Vučković, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961 (2005)
[CrossRef] [PubMed]

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850 (2002)
[CrossRef]

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2002)
[CrossRef]

T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
[CrossRef]

Walker, C. L.

C. L. Walker, C. D. Farmer, C. R. Stanley and C. N. Ironside, "Progress towards photonic crystal quantum cascade laser," IEE Proc. Optoelectronics 151, 502 (204).
[CrossRef]

Wang, K.

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, J. M. Lourtioz, "Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon," Appl. Phys. Lett. 77, 2943 (2000).
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
[CrossRef]

White, J.

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, U. Gosele, "Three-dimensional macroporous silicon photonic crystal with large photonic bandgap," Appl. Phys. Lett. 86, 011101 (2005).
[CrossRef]

Yang, J. K.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444 (2004)
[CrossRef] [PubMed]

Yarekha, D. A.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4μm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

Yoshie, T.

T. Yoshie, M. Lončar, A. Scherer and Y. Qiu, "High frequency oscillation in photonic crystal nanlasers," Appl. Phys. Lett. 84, 3543 (2004).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004)
[CrossRef] [PubMed]

M. Lončar, T. Yoshie, A. Scherer, P. Gogna and Y. M. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680 (2002)
[CrossRef]

T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
[CrossRef]

Yu, P. C.

J. Topolancik, P. Bhattacharya, J. Sabarinathan and P. C. Yu, "Fluid detection with photonic crystal-based multichannel waveguides," Appl. Phys. Lett. 82, 1143 (2003).
[CrossRef]

Yu, S.

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L. Tian, S. Yu and J. M. Rorison, "Focused ion beam-based fabrication of nanostructured photonic devices," IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[CrossRef]

Zhu, J.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006).
[CrossRef]

Zinoviev, K. E.

Appl. Phys. B (1)

Y. Fu and N. K. A. Bryan, "Investigation of physical properties of quartz after focused ion beam bombardment," Appl. Phys. B 80, 581 (2005).
[CrossRef]

Appl. Phys. Lett. (19)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinaya, T. Tanabe and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
[CrossRef]

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, J. M. Lourtioz, "Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon," Appl. Phys. Lett. 77, 2943 (2000).
[CrossRef]

J. Schilling, J. White, A. Scherer, G. Stupian, R. Hillebrand, U. Gosele, "Three-dimensional macroporous silicon photonic crystal with large photonic bandgap," Appl. Phys. Lett. 86, 011101 (2005).
[CrossRef]

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornig, "Quantum cascade lasers with monolithic air-semiconductor Bragg reflectors," Appl. Phys. Lett. 77, 1241 (2000).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. X. Chen, A. Y. Cho and C. Gmachl, "Experimental demonstration of a high-quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915 (2003)
[CrossRef]

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli and F. Capasso, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4164 (2004).
[CrossRef]

S. Hofling, J. Heinrich, H. Hofmann, M. Kamp, J. P. Reithmaier, A. Forchel and J. Seufert, "Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature,", Appl. Phys. Lett. 89, 191113 (2006).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, "High power mid-infrared (λ~5μm) quantum cascade lasers operating above room temperature," Appl. Phys. Lett. 68, 3680 (1996).
[CrossRef]

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini and J. Faist, "Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≈5.4μm," Appl. Phys. Lett. 86, 041109 (2005).
[CrossRef]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006).
[CrossRef]

T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001)
[CrossRef]

S. G. Johnson, S. Fan, A. Mekis and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388 (2001)
[CrossRef]

H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee and J. S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883 (2002)
[CrossRef]

M. Lončar, T. Yoshie, A. Scherer, P. Gogna and Y. M. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680 (2002)
[CrossRef]

T. Yoshie, M. Lončar, A. Scherer and Y. Qiu, "High frequency oscillation in photonic crystal nanlasers," Appl. Phys. Lett. 84, 3543 (2004).
[CrossRef]

A. Talneau, L. LeGratiet, J. L. Gentner, A. Berrier, M. Mulot, S. Anand, and S. Olivier, "High external efficiency in a monomode full-photonic-crystal laser under continuous wave electrical injection," Appl. Phys. Lett. 85, 1913 (2004)
[CrossRef]

M. Lončar, A. Scherer and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648 (2003)
[CrossRef]

J. Topolancik, P. Bhattacharya, J. Sabarinathan and P. C. Yu, "Fluid detection with photonic crystal-based multichannel waveguides," Appl. Phys. Lett. 82, 1143 (2003).
[CrossRef]

H. Kurt and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005).
[CrossRef]

Electron. Lett. (1)

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco and C. F. Gmachl, „Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2006).
[CrossRef]

IEE Proc. Optoelectronics (1)

C. L. Walker, C. D. Farmer, C. R. Stanley and C. N. Ironside, "Progress towards photonic crystal quantum cascade laser," IEE Proc. Optoelectronics 151, 502 (204).
[CrossRef]

IEEE J. Quantum Electron. (3)

Ph. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high-Q small-V microcavities," IEEE J. Quantum Electron. 39, 1430 (2003)
[CrossRef]

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850 (2002)
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, "Resonant tunneling in quantum cascade lasers," IEEE J. Quantum Electron. 34, 9 (1998).
[CrossRef]

IEEE J. Quantum Electtron. (1)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, "Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization," IEEE J. Quantum Electtron. 27, 1332 (1991).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

M. L. Adams, M. Lončar, A. Scherer and Y. M. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348 (2005).
[CrossRef]

J. Chem. Phys. (1)

J. E. Bertie and K. H. Michaelian, "Comparison of infrared and Raman wave numbers of neat molecular liquids: which is the correct infrared wave number to use?," J. Chem. Phys. 109, 6764 (1998)
[CrossRef]

J. Sel. Top. Quantum Electron. (1)

M. J. Cryan, M. Hill, D. Cortaberria Sanz, P. S. Ivanov, P. J. Heard, L. Tian, S. Yu and J. M. Rorison, "Focused ion beam-based fabrication of nanostructured photonic devices," IEEE, J. Sel. Top. Quantum Electron. 11, 1266 (2005).
[CrossRef]

J. Vac. Sci. Tech. B (1)

J. Melngailis, "Focused ion-beam technology and applications," J. Vac. Sci. Tech. B 5, 469 (1987).
[CrossRef]

Nat. Phys. (1)

H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484 (2006)
[CrossRef]

Nature (3)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Eli, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004)
[CrossRef] [PubMed]

Demetri Psaltis, Stephen R. Quake, and Changhuei Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381 (2006)
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003)
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. B (1)

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Phys. Rev. E (1)

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2002)
[CrossRef]

Phys. Rev. Lett. (1)

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006)
[CrossRef] [PubMed]

Phys. Today (1)

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers," Phys. Today 55, 34 (2002)

Reports on Progress in Physics. (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Reports on Progress in Physics. 64, 1533 (2001)
[CrossRef]

Science (3)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444 (2004)
[CrossRef] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374 (2003).
[CrossRef] [PubMed]

Other (1)

M. Lončar, B. G. Lee, M. Troccoli, L. Diehl, F. Capasso, M. Giovannini, J. Faist, "Novel photonic crystal quantum cascade laser platform," CLEO 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Schematic of a thin-slab PhC structure. Guided modes of the structure can be even (TE-like) or odd (TM-like) with respect to the symmetry plane in the middle of the slab (z=0). Even modes have E-field perpendicular to the holes at z=0 and odd modes have E-field parallel to the holes at z=0. (b) Band diagram for guided modes of InP slab (nInP=3.09 @ λ=5.8μm) perforated with holes of radius r=0.28a. Slab thickness is t=0.75a, a is periodicity of the lattice. Bandgap is open for even modes (red), and it is closed for odd modes (blue).

Fig. 2.
Fig. 2.

(a) Schematic of conventional planar PhC laser, with holes etched perpendicular to the top surface. (b) Novel design, based on a thin vertical slab perforated with holes parallel to the top surface. The active region is shown in red, metal contacts in yellow, and the insulating silicon nitride in blue.

Fig. 3.
Fig. 3.

(a) Schematic of the proposed laser design and scanning electron microscopy (SEM) micrograph of the fabricated structure. All electrons that are injected in the structure travel through the active region and participate in light generation. Quantum wells can be seen as a light gray stripe in the SEM image. (b) Simulation result of the high-Q “heterostructure” cavity. Active region is not perforated with PhC lattice, resulting in reduced surface recombination.

Fig. 4.
Fig. 4.

Ez component of the fundamental mode of a (a) 8μm wide ridge made in a conventional QCL material [25], and (b) 1.2μm wide waveguide made in modified QCL material. Two layers above and below active region in (a) are the inner cladding InGaAs layers used to improve Γ. The axes are labeled in μm.

Fig. 5.
Fig. 5.

Two possible implementations of PhC structure below and above active region. (a) ΓJ and (b) ΓX waveguides. (a) ΓJ waveguide couples strongly Ez and Ey components of the field, thus reducing confinement factor. (b) ΓX waveguide preserves the polarization of the Ez field emitted by QCL structure. Modes are shown for k vector at the edge of Brillouin zone: (a) a/λ.=0.289 (b), a/λ.=0.34 (λ. is wavelength in air).

Fig. 6.
Fig. 6.

(a) Resonant mode in the cavity based on the design in Reference 12. The cavity resonance and Q are tuned by shifting holes, as indicated by arrows, and by controlling the width of the cavity, d, by moving the photonic crystal mirrors above and below the cavity towards the center of the cavity. A white box outlines the region used to calculate the partial Qs. (b) Cavity based on ΓX waveguide. The same mechanism as in (a) is used to tune the cavity Q and the resonant frequency.

Fig. 7.
Fig. 7.

(a) Fabry-Perot cavity with photonic crystal mirrors. (b) and (c) The reflectivity and transmission of a photonic crystal mirror consisting of 8 layers of holes made in a 4μm -thick slab. Holes are assumed to have have (b) vertical side walls or (c) slanted side walls (4°).

Fig. 8.
Fig. 8.

Fabrication sequence. See text for detailed description.

Fig. 9.
Fig. 9.

Fabricated PhC cavities. (a) The structure consisting of a bonding pad and a thin ridge with four different cavities. (b) Blow-up of a ΓJ cavity. The quantum well active region can be seen as a light-gray stripe, indicated by an arrow. (c) SEM image of another structure. (d) Fabry-Perot cavity formed between the two photonic crystal mirrors.

Fig. 10.
Fig. 10.

Photonic crystal cavity fabricated using FIB only (no dry etching).

Fig. 11.
Fig. 11.

(a) Schematic of PhC QCL integrated with microfluidic channel. (b) Emission wavelength of the laser vs. refractive index of the fluid surrounding the laser. (c) 1/Q=1/Qintrinsic+1/Qfluid of laser immersed in fluid as a function of imaginary part of the refractive index of the fluid. Black line ‒ PhC QCL, red line 1.4μm wide conventional QCL, and blue line 8μm wide conventional QCL. Both linear and semi-log scales are shown.

Tables (1)

Tables Icon

Table 1. The structure of the QCL material. The active region consists of 10 stages. One stage consists of the following InGaAs/InAlAs layer sequence: 2.7/ 2.2/ 2.5/ 2.0/ 2.2/ 2.0/ 2.1/ 2.3/ 2.2/ 2.7/ 2.1/ 3.0/ 2.0/ 4.3/ 1.3/ 1.9/ 5.2/ 1.8/ 4.5/ 2.8/ 2.8/ 2.1. The layer thicknesses are given in nanometers. InAlAs barriers are shown in bold. The underlined numbers correspond to the doped layers with doping level 41017cm−3 resulting in the averaged doping of the active of 1017cm−3. n is the real and k is the imaginary part of the refractive index.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Γ = active W z dxdz total W tot dxdz , W z = ε E z 2 , W tot = ε ( E x 2 + E y 2 + E z 2 )
J th = α g Γ
1 Q = 1 Q scattering + 1 Q material = 1 Q x + 1 Q y + 1 Q z + 1 Q material
Q material = 2 π n eff λ α waveguide = n eff 2 k eff ,
η i = 1 Q i 1 Q
Q = 2 π n eff λ α mirror = 2 π n eff L λ ln ( R front R back )
1 Q ( k ) = 1 Q int rinsic + 1 Q fluid = 1 Q int rinsic + k s

Metrics