Abstract

We present observations of quasi-phase matched parametric fluorescence in a periodically poled twin-hole silica fiber. The phase matching condition in the fiber enables the generation of a degenerate signal field in the fiber-optic communication band centered on 1556 nm. We performed coincidence measurements and a Hong-Ou-Mandel experiment to validate that the signal arises from photon pairs. A coincidence peak with a signal to noise ratio (SNR) of 4 using 43 mW of pump power and a Hong-Ou-Mandel dip showing 40% net visibility were measured. Moreover, the experiments were performed with standard single mode fibers spliced at both ends of the poled section, which makes this source easy to integrate in fiber-optic quantum communication applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Ekert, "Quantum cryptography based on Bells theorem," Phys. Rev. Lett. 67, 661-663 (1991).
    [CrossRef] [PubMed]
  2. A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, "Practical quantum cryptography based on two-photon interferometry," Phys. Rev. Lett. 69, 1293-1295 (1992).
    [CrossRef] [PubMed]
  3. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum Cryptography with Entangled Photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
    [CrossRef] [PubMed]
  4. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum Cryptography Using Entangled Photons in Energy-Time Bell States," Phys. Rev. Lett. 84, 4737-4740 (2000).
    [CrossRef] [PubMed]
  5. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
    [CrossRef]
  6. M. Fiorentino, P. L. Voss, J. E. Sharping and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002).
    [CrossRef]
  7. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005), http://www.opticsexpress.org/abstract.cfm?id=82392.
    [CrossRef] [PubMed]
  8. G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster and J. G. Rarity, "Parametric fluorescence in periodically poled silica fibers," Appl. Phys. Lett. 75, 2356-2358 (1999).
    [CrossRef]
  9. C. Corbari, A. Canagasabey, M. Ibsen, F. P. Mezzapesa, C. Codemard, J. Nilsson and P. G. Kazansky, "All-fibre frequency conversion in long periodically poled silica fibres," in Optical Fiber Communication Conference, 2005, Technical Digest, Anhein 5-11 March 2005 OFB3.
  10. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
    [CrossRef] [PubMed]
  11. A. Fotiadi, O. Deparis, P.M egret, C. Corbari, A. Canagasabey,M. Ibsen, and P. G. Kazansky, "All fiber frequency doubled Er/Brillouin laser," in CLEO/QELS 2006 Long Beach 21-26 May 2006 CTuI3.
  12. P. Merritt, R. P. Tatam, and D. A. Jackson, "Interferometric chromatic dispersion measurements on short lengthsof monomode optical fiber," J. Lightwave Technol. 7, 703-716 (1989).
    [CrossRef]
  13. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference, " Phys. Rev. Lett. 59, 2044-2046 (1987).
    [CrossRef] [PubMed]
  14. M. Halder, S. Tanzilli, H. de Riedmatten, A. Beveratos, H. Zbinden, and N. Gisin, "Photon-bunching measurement after two 25-km-long optical fibers," Phys. Rev. A 71, 04233515 (2005).
    [CrossRef]

2005

J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005), http://www.opticsexpress.org/abstract.cfm?id=82392.
[CrossRef] [PubMed]

M. Halder, S. Tanzilli, H. de Riedmatten, A. Beveratos, H. Zbinden, and N. Gisin, "Photon-bunching measurement after two 25-km-long optical fibers," Phys. Rev. A 71, 04233515 (2005).
[CrossRef]

2002

M. Fiorentino, P. L. Voss, J. E. Sharping and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

2001

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

2000

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum Cryptography with Entangled Photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum Cryptography Using Entangled Photons in Energy-Time Bell States," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

1999

G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster and J. G. Rarity, "Parametric fluorescence in periodically poled silica fibers," Appl. Phys. Lett. 75, 2356-2358 (1999).
[CrossRef]

1992

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, "Practical quantum cryptography based on two-photon interferometry," Phys. Rev. Lett. 69, 1293-1295 (1992).
[CrossRef] [PubMed]

1991

1989

P. Merritt, R. P. Tatam, and D. A. Jackson, "Interferometric chromatic dispersion measurements on short lengthsof monomode optical fiber," J. Lightwave Technol. 7, 703-716 (1989).
[CrossRef]

1987

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference, " Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Baldi, P.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Beveratos, A.

M. Halder, S. Tanzilli, H. de Riedmatten, A. Beveratos, H. Zbinden, and N. Gisin, "Photon-bunching measurement after two 25-km-long optical fibers," Phys. Rev. A 71, 04233515 (2005).
[CrossRef]

Bonfrate, G.

G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster and J. G. Rarity, "Parametric fluorescence in periodically poled silica fibers," Appl. Phys. Lett. 75, 2356-2358 (1999).
[CrossRef]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum Cryptography Using Entangled Photons in Energy-Time Bell States," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Brueck, S. R. J.

De Micheli, M.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

de Riedmatten, H.

M. Halder, S. Tanzilli, H. de Riedmatten, A. Beveratos, H. Zbinden, and N. Gisin, "Photon-bunching measurement after two 25-km-long optical fibers," Phys. Rev. A 71, 04233515 (2005).
[CrossRef]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Duligall, J.

Ekert, A. K.

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, "Practical quantum cryptography based on two-photon interferometry," Phys. Rev. Lett. 69, 1293-1295 (1992).
[CrossRef] [PubMed]

A. K. Ekert, "Quantum cryptography based on Bells theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Fulconis, J.

Gisin, N.

M. Halder, S. Tanzilli, H. de Riedmatten, A. Beveratos, H. Zbinden, and N. Gisin, "Photon-bunching measurement after two 25-km-long optical fibers," Phys. Rev. A 71, 04233515 (2005).
[CrossRef]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum Cryptography Using Entangled Photons in Energy-Time Bell States," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Halder, M.

M. Halder, S. Tanzilli, H. de Riedmatten, A. Beveratos, H. Zbinden, and N. Gisin, "Photon-bunching measurement after two 25-km-long optical fibers," Phys. Rev. A 71, 04233515 (2005).
[CrossRef]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference, " Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Jackson, D. A.

P. Merritt, R. P. Tatam, and D. A. Jackson, "Interferometric chromatic dispersion measurements on short lengthsof monomode optical fiber," J. Lightwave Technol. 7, 703-716 (1989).
[CrossRef]

Jennewein, T.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum Cryptography with Entangled Photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Kazansky, P. G.

G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster and J. G. Rarity, "Parametric fluorescence in periodically poled silica fibers," Appl. Phys. Lett. 75, 2356-2358 (1999).
[CrossRef]

Kumar, P.

M. Fiorentino, P. L. Voss, J. E. Sharping and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference, " Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Merritt, P.

P. Merritt, R. P. Tatam, and D. A. Jackson, "Interferometric chromatic dispersion measurements on short lengthsof monomode optical fiber," J. Lightwave Technol. 7, 703-716 (1989).
[CrossRef]

Mukherjee, N.

Myers, R. A.

Ostrowsky, D. B.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference, " Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Palma, G. M.

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, "Practical quantum cryptography based on two-photon interferometry," Phys. Rev. Lett. 69, 1293-1295 (1992).
[CrossRef] [PubMed]

Pruneri, V.

G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster and J. G. Rarity, "Parametric fluorescence in periodically poled silica fibers," Appl. Phys. Lett. 75, 2356-2358 (1999).
[CrossRef]

Rarity, J.

Rarity, J. G.

G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster and J. G. Rarity, "Parametric fluorescence in periodically poled silica fibers," Appl. Phys. Lett. 75, 2356-2358 (1999).
[CrossRef]

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, "Practical quantum cryptography based on two-photon interferometry," Phys. Rev. Lett. 69, 1293-1295 (1992).
[CrossRef] [PubMed]

Russell, P.

Sharping, J. E.

M. Fiorentino, P. L. Voss, J. E. Sharping and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Simon, C.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum Cryptography with Entangled Photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Tanzilli, S.

M. Halder, S. Tanzilli, H. de Riedmatten, A. Beveratos, H. Zbinden, and N. Gisin, "Photon-bunching measurement after two 25-km-long optical fibers," Phys. Rev. A 71, 04233515 (2005).
[CrossRef]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

Tapster, P.

G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster and J. G. Rarity, "Parametric fluorescence in periodically poled silica fibers," Appl. Phys. Lett. 75, 2356-2358 (1999).
[CrossRef]

Tapster, P. R.

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, "Practical quantum cryptography based on two-photon interferometry," Phys. Rev. Lett. 69, 1293-1295 (1992).
[CrossRef] [PubMed]

Tatam, R. P.

P. Merritt, R. P. Tatam, and D. A. Jackson, "Interferometric chromatic dispersion measurements on short lengthsof monomode optical fiber," J. Lightwave Technol. 7, 703-716 (1989).
[CrossRef]

Tittel, W.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum Cryptography Using Entangled Photons in Energy-Time Bell States," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Voss, P. L.

M. Fiorentino, P. L. Voss, J. E. Sharping and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

Wadsworth, W.

Weihs, G.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum Cryptography with Entangled Photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Weinfurter, H.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum Cryptography with Entangled Photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Zbinden, H.

M. Halder, S. Tanzilli, H. de Riedmatten, A. Beveratos, H. Zbinden, and N. Gisin, "Photon-bunching measurement after two 25-km-long optical fibers," Phys. Rev. A 71, 04233515 (2005).
[CrossRef]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum Cryptography Using Entangled Photons in Energy-Time Bell States," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Zeilinger, A.

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum Cryptography with Entangled Photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett.

G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster and J. G. Rarity, "Parametric fluorescence in periodically poled silica fibers," Appl. Phys. Lett. 75, 2356-2358 (1999).
[CrossRef]

Electron. Lett.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using periodically poledlithium niobate waveguide," Electron. Lett. 37, 26-28 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Fiorentino, P. L. Voss, J. E. Sharping and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002).
[CrossRef]

J. Lightwave Technol.

P. Merritt, R. P. Tatam, and D. A. Jackson, "Interferometric chromatic dispersion measurements on short lengthsof monomode optical fiber," J. Lightwave Technol. 7, 703-716 (1989).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

M. Halder, S. Tanzilli, H. de Riedmatten, A. Beveratos, H. Zbinden, and N. Gisin, "Photon-bunching measurement after two 25-km-long optical fibers," Phys. Rev. A 71, 04233515 (2005).
[CrossRef]

Phys. Rev. Lett.

C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference, " Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

A. K. Ekert, "Quantum cryptography based on Bells theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, "Practical quantum cryptography based on two-photon interferometry," Phys. Rev. Lett. 69, 1293-1295 (1992).
[CrossRef] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum Cryptography with Entangled Photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum Cryptography Using Entangled Photons in Energy-Time Bell States," Phys. Rev. Lett. 84, 4737-4740 (2000).
[CrossRef] [PubMed]

Other

C. Corbari, A. Canagasabey, M. Ibsen, F. P. Mezzapesa, C. Codemard, J. Nilsson and P. G. Kazansky, "All-fibre frequency conversion in long periodically poled silica fibres," in Optical Fiber Communication Conference, 2005, Technical Digest, Anhein 5-11 March 2005 OFB3.

A. Fotiadi, O. Deparis, P.M egret, C. Corbari, A. Canagasabey,M. Ibsen, and P. G. Kazansky, "All fiber frequency doubled Er/Brillouin laser," in CLEO/QELS 2006 Long Beach 21-26 May 2006 CTuI3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Second-harmonic power (after removal of the pump) versus pump wavelength. The pump peak power is 220 W and the resonance is at 1556 nm. The acceptance bandwidth of the fiber is ∼ 1.4 nm FWHM.

Fig. 2.
Fig. 2.

Experimental setup: ISO, isolator; PBS, polarizing beam splitter; HWP, half-wave plate; X20, microscope objective; SMF, single mode fiber; PPSF, periodically poled silica fiber; LWP, long-wave pass filter; APD, avalanche photodiode; TAC, time to amplitude converter; Inset: Cross section image of the twin-hole fiber used in the experiment. Distance between the holes is 10 μm.

Fig. 3. (a).
Fig. 3. (a).

Parametric fluorescence power (after removal of the pump) to pump power ratio versus pump wavelength. The periodic poling resonance lies at 778 nm. (b) Coincidence histogram: each slot is 0.5 ns long. The peak in the histogram is a signature for time-correlated photons. It shows a SNR of 4. The pump power measured at the output is 43 mW.

Fig. 4. (a).
Fig. 4. (a).

Schematic depiction of the experimental set-up for observing the Hong-Ou-Mandel dip. Photon pairs may be splitted on a 50/50 beam-splitter (BS1) and recombined on the same beam-splitter after reflection on two Faraday mirrors (FM1 and FM2). The coincidence rate between the two outputs is measured as a function of the delay DL set on the upper arm. (In the actual experiment, optical-fiber components are used) (b) Theoretical coincidence probability versus the delay ΔL: expected two-photons interferences prevent the dip to be easily observed (gray line). Small variations over ΔL can be induced by a pattern generator (PG) to lower this effect (blue line).

Fig. 5.
Fig. 5.

(a) Differences in fiber lengths measured by white-light interferometry versus temperature difference between the two arms of the interferometer. (b) Coincidence measurements at the Michelson interferometer outputs (black dot) for 45 mW pump power measured at the output of the PPSF and gaussian fit (red curve); The coincidence rate is calculated over 3 ns time window (4 slots); the error on the coincidence number is due to the dark counts; the horizontal error is due to the slight modulation of ΔL; the blue points show the accidental events. The theoretical curve (grey) takes into account the spectral width of the produced photon pairs, and the slight modulation of ΔL. It has a 50% maximum visibility (after accidental events are substracted). Note that we have a higher coincidence rate than in section 3 thanks to a better coupling of the pump to the fundamental mode

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P signal h̄ω s 2 π B ω η SH P pump ,
B ω = 2 π d 2 β s s 2 ω s 0 L ,
P c 2 e Δω 2 τ 2 cos ω p τ ,

Metrics