H. Ebendorff-Heidepriem, P. Petrpopoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12,5082–5087 (2004).
[Crossref]
[PubMed]
Y. H. Kim, B. H. Lee, U.-C. Paek, and W. -T. Han, “Resonant optical nonlinearity measurement of Yb3+/Al3+ co-doped optical fibers by use of a long-period fiber grating pair,” Opt. Lett. 27,580–582 (2002).
[Crossref]
K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38,166–167 (2002).
[Crossref]
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25,69–74 (2002).
[Crossref]
K. Nakajima, T. Omae, and M. Ohashi, “Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method,” IEEE Proc.-Optoelectron. 148,209–214 (2001).
[Crossref]
J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids 60,1729–1736 (1999).
[Crossref]
X. Zhu, Q. Li, N. Ming, and Z. Meng, “Origin of optical nonlinearity for PbO, TiO2, K2O and SiO2 optical glasses,” Appl. Phys. Lett. 71,867–869 (1997).
[Crossref]
A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous wave measurement of n2 in various types of telecommunication fiber at 1.55μm,” Opt. Lett. 21,1966–1968 (1996).
[Crossref]
[PubMed]
S. M. Jones, S. E. Friberg, and H. C. Farrington, “Charge Transfer Transitions of Copper (II) in Drying Silicate Xerogels,” Phys. Chem. Glasses 37,111–115 (1996).
D. C. Hutchings, M. Sheik-Bache, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24,1–30 (1992).
[Crossref]
R. A. Betts, T. Tjugiato, Y. L. Xue, and P. L. Chu, “Nonlinear refractive index in Erbium doped optical fiber: theory and experiment,” IEEE J. Quantum. Elect. 27,908–913 (1991).
[Crossref]
K. C. Byron, “Kerr modulation of signal at 1.3 and 1.5 μm in polarization-maintaining fiber pumped at 1.08μm,” Electron. Lett. 23,1324–1326 (1987).
[Crossref]
G. P. Agrawal, “Appendix B: Nonlinear Refractive Index,” in Nonlinear Fiber Optics, P. L. Kelley, ed., (Academic Press, San Diego, 3rd, 2001).
H. Ebendorff-Heidepriem, P. Petrpopoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12,5082–5087 (2004).
[Crossref]
[PubMed]
R. A. Betts, T. Tjugiato, Y. L. Xue, and P. L. Chu, “Nonlinear refractive index in Erbium doped optical fiber: theory and experiment,” IEEE J. Quantum. Elect. 27,908–913 (1991).
[Crossref]
K. C. Byron, “Kerr modulation of signal at 1.3 and 1.5 μm in polarization-maintaining fiber pumped at 1.08μm,” Electron. Lett. 23,1324–1326 (1987).
[Crossref]
P. L Chu, “Nonlinear effects in rare-earth-doped fibers and waveguides,” in Proceedings of Lasers and Electro-Optics Society Annual Meeting (LEOS’97 10th Annual Meeting, Academic, San Francisco, CA Technical meeting, 1997), pp.371–372.
R. A. Betts, T. Tjugiato, Y. L. Xue, and P. L. Chu, “Nonlinear refractive index in Erbium doped optical fiber: theory and experiment,” IEEE J. Quantum. Elect. 27,908–913 (1991).
[Crossref]
H. Ebendorff-Heidepriem, P. Petrpopoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12,5082–5087 (2004).
[Crossref]
[PubMed]
J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids 60,1729–1736 (1999).
[Crossref]
S. M. Jones, S. E. Friberg, and H. C. Farrington, “Charge Transfer Transitions of Copper (II) in Drying Silicate Xerogels,” Phys. Chem. Glasses 37,111–115 (1996).
H. Ebendorff-Heidepriem, P. Petrpopoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12,5082–5087 (2004).
[Crossref]
[PubMed]
H. Ebendorff-Heidepriem, P. Petrpopoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12,5082–5087 (2004).
[Crossref]
[PubMed]
P. Petropoulos, T. M. Monro, H. Ebendorff-Herdepriem, K. Frampton, R. C. Moore, and D. J. Richardson, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11.3658–3573 (2003).
[Crossref]
S. M. Jones, S. E. Friberg, and H. C. Farrington, “Charge Transfer Transitions of Copper (II) in Drying Silicate Xerogels,” Phys. Chem. Glasses 37,111–115 (1996).
J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids 60,1729–1736 (1999).
[Crossref]
J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids 60,1729–1736 (1999).
[Crossref]
D. C. Hutchings, M. Sheik-Bache, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24,1–30 (1992).
[Crossref]
N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360W-1km-1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004) paper PDP26.
D. C. Hutchings, M. Sheik-Bache, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24,1–30 (1992).
[Crossref]
S. M. Jones, S. E. Friberg, and H. C. Farrington, “Charge Transfer Transitions of Copper (II) in Drying Silicate Xerogels,” Phys. Chem. Glasses 37,111–115 (1996).
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25,69–74 (2002).
[Crossref]
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25,69–74 (2002).
[Crossref]
K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38,166–167 (2002).
[Crossref]
N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360W-1km-1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004) paper PDP26.
H. Ebendorff-Heidepriem, P. Petrpopoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12,5082–5087 (2004).
[Crossref]
[PubMed]
X. Zhu, Q. Li, N. Ming, and Z. Meng, “Origin of optical nonlinearity for PbO, TiO2, K2O and SiO2 optical glasses,” Appl. Phys. Lett. 71,867–869 (1997).
[Crossref]
X. Zhu, Q. Li, N. Ming, and Z. Meng, “Origin of optical nonlinearity for PbO, TiO2, K2O and SiO2 optical glasses,” Appl. Phys. Lett. 71,867–869 (1997).
[Crossref]
X. Zhu, Q. Li, N. Ming, and Z. Meng, “Origin of optical nonlinearity for PbO, TiO2, K2O and SiO2 optical glasses,” Appl. Phys. Lett. 71,867–869 (1997).
[Crossref]
H. Ebendorff-Heidepriem, P. Petrpopoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12,5082–5087 (2004).
[Crossref]
[PubMed]
P. Petropoulos, T. M. Monro, H. Ebendorff-Herdepriem, K. Frampton, R. C. Moore, and D. J. Richardson, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11.3658–3573 (2003).
[Crossref]
H. Ebendorff-Heidepriem, P. Petrpopoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12,5082–5087 (2004).
[Crossref]
[PubMed]
P. Petropoulos, T. M. Monro, H. Ebendorff-Herdepriem, K. Frampton, R. C. Moore, and D. J. Richardson, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11.3658–3573 (2003).
[Crossref]
N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360W-1km-1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004) paper PDP26.
K. Nakajima, T. Omae, and M. Ohashi, “Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method,” IEEE Proc.-Optoelectron. 148,209–214 (2001).
[Crossref]
H. Nakanishi, in Extended Abstract of Industrial Science and Technology Frontier Program, the Sixth Symposium on Nonlinear Photonic Materials (Japan Chemical Innovation Institute, Tokyo, 1999), paper 1 (in Japanese).
N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360W-1km-1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004) paper PDP26.
K. Nakajima, T. Omae, and M. Ohashi, “Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method,” IEEE Proc.-Optoelectron. 148,209–214 (2001).
[Crossref]
K. Nakajima, T. Omae, and M. Ohashi, “Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method,” IEEE Proc.-Optoelectron. 148,209–214 (2001).
[Crossref]
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25,69–74 (2002).
[Crossref]
J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids 60,1729–1736 (1999).
[Crossref]
H. Ebendorff-Heidepriem, P. Petrpopoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12,5082–5087 (2004).
[Crossref]
[PubMed]
H. Ebendorff-Heidepriem, P. Petrpopoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12,5082–5087 (2004).
[Crossref]
[PubMed]
P. Petropoulos, T. M. Monro, H. Ebendorff-Herdepriem, K. Frampton, R. C. Moore, and D. J. Richardson, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11.3658–3573 (2003).
[Crossref]
D. C. Hutchings, M. Sheik-Bache, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24,1–30 (1992).
[Crossref]
D. C. Hutchings, M. Sheik-Bache, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24,1–30 (1992).
[Crossref]
K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38,166–167 (2002).
[Crossref]
N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360W-1km-1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004) paper PDP26.
K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38,166–167 (2002).
[Crossref]
N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360W-1km-1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004) paper PDP26.
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25,69–74 (2002).
[Crossref]
R. A. Betts, T. Tjugiato, Y. L. Xue, and P. L. Chu, “Nonlinear refractive index in Erbium doped optical fiber: theory and experiment,” IEEE J. Quantum. Elect. 27,908–913 (1991).
[Crossref]
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25,69–74 (2002).
[Crossref]
J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids 60,1729–1736 (1999).
[Crossref]
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25,69–74 (2002).
[Crossref]
R. A. Betts, T. Tjugiato, Y. L. Xue, and P. L. Chu, “Nonlinear refractive index in Erbium doped optical fiber: theory and experiment,” IEEE J. Quantum. Elect. 27,908–913 (1991).
[Crossref]
J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids 60,1729–1736 (1999).
[Crossref]
X. Zhu, Q. Li, N. Ming, and Z. Meng, “Origin of optical nonlinearity for PbO, TiO2, K2O and SiO2 optical glasses,” Appl. Phys. Lett. 71,867–869 (1997).
[Crossref]
X. Zhu, Q. Li, N. Ming, and Z. Meng, “Origin of optical nonlinearity for PbO, TiO2, K2O and SiO2 optical glasses,” Appl. Phys. Lett. 71,867–869 (1997).
[Crossref]
P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, “Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix,” Bull. Mater. Sci. 25,69–74 (2002).
[Crossref]
K. C. Byron, “Kerr modulation of signal at 1.3 and 1.5 μm in polarization-maintaining fiber pumped at 1.08μm,” Electron. Lett. 23,1324–1326 (1987).
[Crossref]
K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38,166–167 (2002).
[Crossref]
R. A. Betts, T. Tjugiato, Y. L. Xue, and P. L. Chu, “Nonlinear refractive index in Erbium doped optical fiber: theory and experiment,” IEEE J. Quantum. Elect. 27,908–913 (1991).
[Crossref]
K. Nakajima, T. Omae, and M. Ohashi, “Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method,” IEEE Proc.-Optoelectron. 148,209–214 (2001).
[Crossref]
J. F. Pérez-Robles, F. J. García-Rodríguez, J. M. Yáñez-Limón, F. J. Espinoza-Beltrán, Y. V. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids 60,1729–1736 (1999).
[Crossref]
H. Ebendorff-Heidepriem, P. Petrpopoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12,5082–5087 (2004).
[Crossref]
[PubMed]
P. Petropoulos, T. M. Monro, H. Ebendorff-Herdepriem, K. Frampton, R. C. Moore, and D. J. Richardson, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11.3658–3573 (2003).
[Crossref]
H. G. Park, C. C. Pohalski, and B. Y. Kim, “Optical Kerr switching using elliptical core two-mode fiber,” Opt. Lett. 13,776–778 (1988).
[Crossref]
[PubMed]
Y. H. Kim, B. H. Lee, U.-C. Paek, and W. -T. Han, “Resonant optical nonlinearity measurement of Yb3+/Al3+ co-doped optical fibers by use of a long-period fiber grating pair,” Opt. Lett. 27,580–582 (2002).
[Crossref]
A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous wave measurement of n2 in various types of telecommunication fiber at 1.55μm,” Opt. Lett. 21,1966–1968 (1996).
[Crossref]
[PubMed]
D. C. Hutchings, M. Sheik-Bache, D. J. Hagan, and E. W. Van Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24,1–30 (1992).
[Crossref]
S. M. Jones, S. E. Friberg, and H. C. Farrington, “Charge Transfer Transitions of Copper (II) in Drying Silicate Xerogels,” Phys. Chem. Glasses 37,111–115 (1996).
G. P. Agrawal, “Appendix B: Nonlinear Refractive Index,” in Nonlinear Fiber Optics, P. L. Kelley, ed., (Academic Press, San Diego, 3rd, 2001).
N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360W-1km-1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004) paper PDP26.
P. L Chu, “Nonlinear effects in rare-earth-doped fibers and waveguides,” in Proceedings of Lasers and Electro-Optics Society Annual Meeting (LEOS’97 10th Annual Meeting, Academic, San Francisco, CA Technical meeting, 1997), pp.371–372.
H. Nakanishi, in Extended Abstract of Industrial Science and Technology Frontier Program, the Sixth Symposium on Nonlinear Photonic Materials (Japan Chemical Innovation Institute, Tokyo, 1999), paper 1 (in Japanese).