Abstract

The possibility of making a given object transparent to the impinging radiation, or cloaking it, by employing a suitable metamaterial or plasmonic cover has been recently studied theoretically, showing how this technique may overcome the limitations of other currently available techniques. Here we discuss the underlying mechanisms, physical insights and some computer simulations on the role of such homogeneous isotropic metamaterial covers near their plasma frequency in order to dramatically reduce the fields scattered by a given object. Not requiring any absorptive process, any anisotropy or inhomogeneity, and any interference cancellation, in this contribution we demonstrate, using full-wave numerical simulations, how a homogeneous isotropic plasmonic material shell may basically “re-route” the impinging field in such a way to make dielectric and even conducting or metallic objects of a certain size nearly transparent to an outside observer placed in its near as well as in its far field. In addition, it is discussed in detail how this technique, relying on a non-resonant phenomenon, is fairly robust to relatively high variations of the shape and of the geometrical and electromagnetic properties of the cloaked object.

© 2007 Optical Society of America

PDF Article
OSA Recommended Articles
Cloaking and transparency for collections of particles with metamaterial and plasmonic covers

Andrea Alù and Nader Engheta
Opt. Express 15(12) 7578-7590 (2007)

Scattering cancellation of the magnetic dipole field from macroscopic spheres

M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer
Opt. Express 20(13) 13896-13906 (2012)

Scattering reduction at near-infrared frequencies using plasmonic nanostructures

Venkata Ananth Tamma, Yonghao Cui, and Wounjhang Park
Opt. Express 21(1) 1041-1056 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fante and M. T. McCornack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 30,1443–1454 (1968).
  2. J. Ward, “Towards invisible glass,” Vacuum 22,369–375 (1972).
    [Crossref]
  3. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72,016623 (2005).
    [Crossref]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312,1780–1782 (2006).
    [Crossref] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
    [Crossref] [PubMed]
  6. N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49,8479–8482 (1994).
    [Crossref]
  7. G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. Lond. A: Math. Phys. Sci. 462,3027–59 (2006).
    [Crossref]
  8. U. Leonhardt, “Optical conformal mapping,” Science 312,1777–1780 (2006).
    [Crossref] [PubMed]
  9. L. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, UK, 1984).
  10. R. W. Ziolkowski and N. Engheta, (guest editors), IEEE Trans. Antennas Propag.51,2546–2750 (2003).
  11. W. Rotman, “Plasma simulation by artificial dielectrics and parallel-plate media,” IRE Trans. Antennas Propag. 10,82–95 (1962).
    [Crossref]
  12. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10,4785–4809 (1998).
    [Crossref]
  13. J. A. Stratton, Electromagnetic Theory (McGraw-Hill Comp., New York and London, 1941).
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  15. M. Kerker, “Invisible bodies,” J. Opt. Soc. Am. 65,376–379 (1975).
    [Crossref]
  16. CST Microwave Studio TM 5.0, CST of America, Inc., www.cst.com.
  17. R. E. Collin, Field Theory of Guided Waves, (IEEE Press, New York, 1991).
  18. A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt Express 14,1557–1567 (2006).
    [Crossref] [PubMed]

2006 (5)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312,1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[Crossref] [PubMed]

G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. Lond. A: Math. Phys. Sci. 462,3027–59 (2006).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312,1777–1780 (2006).
[Crossref] [PubMed]

A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt Express 14,1557–1567 (2006).
[Crossref] [PubMed]

2005 (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72,016623 (2005).
[Crossref]

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10,4785–4809 (1998).
[Crossref]

1994 (1)

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49,8479–8482 (1994).
[Crossref]

1975 (1)

1972 (1)

J. Ward, “Towards invisible glass,” Vacuum 22,369–375 (1972).
[Crossref]

1968 (1)

R. L. Fante and M. T. McCornack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 30,1443–1454 (1968).

1962 (1)

W. Rotman, “Plasma simulation by artificial dielectrics and parallel-plate media,” IRE Trans. Antennas Propag. 10,82–95 (1962).
[Crossref]

Alù, A.

A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt Express 14,1557–1567 (2006).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72,016623 (2005).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Collin, R. E.

R. E. Collin, Field Theory of Guided Waves, (IEEE Press, New York, 1991).

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[Crossref] [PubMed]

Engheta, N.

A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt Express 14,1557–1567 (2006).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72,016623 (2005).
[Crossref]

Fante, R. L.

R. L. Fante and M. T. McCornack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 30,1443–1454 (1968).

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10,4785–4809 (1998).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[Crossref] [PubMed]

Kerker, M.

Landau, L.

L. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, UK, 1984).

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312,1777–1780 (2006).
[Crossref] [PubMed]

Lifschitz, E. M.

L. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, UK, 1984).

McCornack, M. T.

R. L. Fante and M. T. McCornack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 30,1443–1454 (1968).

McPhedran, R. C.

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49,8479–8482 (1994).
[Crossref]

Milton, G. W.

G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. Lond. A: Math. Phys. Sci. 462,3027–59 (2006).
[Crossref]

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49,8479–8482 (1994).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[Crossref] [PubMed]

Nicorovici, N. A.

G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. Lond. A: Math. Phys. Sci. 462,3027–59 (2006).
[Crossref]

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49,8479–8482 (1994).
[Crossref]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312,1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10,4785–4809 (1998).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10,4785–4809 (1998).
[Crossref]

Rotman, W.

W. Rotman, “Plasma simulation by artificial dielectrics and parallel-plate media,” IRE Trans. Antennas Propag. 10,82–95 (1962).
[Crossref]

Salandrino, A.

A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt Express 14,1557–1567 (2006).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312,1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[Crossref] [PubMed]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312,1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10,4785–4809 (1998).
[Crossref]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill Comp., New York and London, 1941).

Ward, J.

J. Ward, “Towards invisible glass,” Vacuum 22,369–375 (1972).
[Crossref]

IEEE Trans. Antennas Propag. (1)

R. L. Fante and M. T. McCornack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 30,1443–1454 (1968).

IRE Trans. Antennas Propag. (1)

W. Rotman, “Plasma simulation by artificial dielectrics and parallel-plate media,” IRE Trans. Antennas Propag. 10,82–95 (1962).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10,4785–4809 (1998).
[Crossref]

Opt Express (1)

A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt Express 14,1557–1567 (2006).
[Crossref] [PubMed]

Phys. Rev. B (1)

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49,8479–8482 (1994).
[Crossref]

Phys. Rev. E (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72,016623 (2005).
[Crossref]

Proc. R. Soc. Lond. A: Math. Phys. Sci. (1)

G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. Lond. A: Math. Phys. Sci. 462,3027–59 (2006).
[Crossref]

Science (3)

U. Leonhardt, “Optical conformal mapping,” Science 312,1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312,1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314,977–980 (2006).
[Crossref] [PubMed]

Vacuum (1)

J. Ward, “Towards invisible glass,” Vacuum 22,369–375 (1972).
[Crossref]

Other (6)

L. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, UK, 1984).

R. W. Ziolkowski and N. Engheta, (guest editors), IEEE Trans. Antennas Propag.51,2546–2750 (2003).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill Comp., New York and London, 1941).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

CST Microwave Studio TM 5.0, CST of America, Inc., www.cst.com.

R. E. Collin, Field Theory of Guided Waves, (IEEE Press, New York, 1991).

Supplementary Material (13)

» Media 1: GIF (1836 KB)     
» Media 2: GIF (1964 KB)     
» Media 3: GIF (1961 KB)     
» Media 4: GIF (2272 KB)     
» Media 5: GIF (1739 KB)     
» Media 6: GIF (2222 KB)     
» Media 7: GIF (2736 KB)     
» Media 8: GIF (3040 KB)     
» Media 9: GIF (2538 KB)     
» Media 10: GIF (2332 KB)     
» Media 11: GIF (2306 KB)     
» Media 12: GIF (2468 KB)     
» Media 13: GIF (2469 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics