Abstract

The possibility of making a given object transparent to the impinging radiation, or cloaking it, by employing a suitable metamaterial or plasmonic cover has been recently studied theoretically, showing how this technique may overcome the limitations of other currently available techniques. Here we discuss the underlying mechanisms, physical insights and some computer simulations on the role of such homogeneous isotropic metamaterial covers near their plasma frequency in order to dramatically reduce the fields scattered by a given object. Not requiring any absorptive process, any anisotropy or inhomogeneity, and any interference cancellation, in this contribution we demonstrate, using full-wave numerical simulations, how a homogeneous isotropic plasmonic material shell may basically “re-route” the impinging field in such a way to make dielectric and even conducting or metallic objects of a certain size nearly transparent to an outside observer placed in its near as well as in its far field. In addition, it is discussed in detail how this technique, relying on a non-resonant phenomenon, is fairly robust to relatively high variations of the shape and of the geometrical and electromagnetic properties of the cloaked object.

© 2007 Optical Society of America

Full Article  |  PDF Article

Errata

M. P. Shepilov and A. A. Zhilin, "Metamaterials and the problem of creating invisible objects. 1. Objects with size less than a wavelength," J. Opt. Technol. 75, 792-799 (2008)
https://www.osapublishing.org/jot/abstract.cfm?uri=jot-75-12-792

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fante, and M. T. McCornack, "Reflection properties of the Salisbury screen," IEEE Trans. Antennas Propag. 30, 1443-1454 (1968).
  2. J. Ward, "Towards invisible glass," Vacuum 22, 369-375 (1972).
    [CrossRef]
  3. A. Alù, and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005).
    [CrossRef]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
    [CrossRef] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
    [CrossRef] [PubMed]
  6. N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, "Optical and dielectric properties of partially resonant composites," Phys. Rev. B 49, 8479-8482 (1994).
    [CrossRef]
  7. G. W. Milton, and N. A. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. Lond. A: Math. Phys. Sci. 462, 3027-59 (2006).
    [CrossRef]
  8. U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006).
    [CrossRef] [PubMed]
  9. L. Landau, and E. M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, UK, 1984).
  10. R. W. Ziolkowski, and N. Engheta, (guest eds.), IEEE Trans. Antennas Propag. 51, 2546-2750 (2003).
    [CrossRef]
  11. W. Rotman, "Plasma simulation by artificial dielectrics and parallel-plate media," IRE Trans. Antennas Propag. 10, 82-95 (1962).
    [CrossRef]
  12. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4809 (1998).
    [CrossRef]
  13. J. A. Stratton, Electromagnetic Theory (McGraw-Hill Comp., New York and London, 1941).
  14. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  15. M. Kerker, "Invisible bodies," J. Opt. Soc. Am. 65, 376-379 (1975).
    [CrossRef]
  16. CST Microwave StudioTM 5.0, CST of America, Inc., www.cst.com.
  17. R. E. Collin, Field Theory of Guided Waves, (IEEE Press, New York, 1991).
  18. A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt Express 14, 1557-1567 (2006).
    [CrossRef] [PubMed]

2006

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

G. W. Milton, and N. A. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. Lond. A: Math. Phys. Sci. 462, 3027-59 (2006).
[CrossRef]

U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt Express 14, 1557-1567 (2006).
[CrossRef] [PubMed]

2005

A. Alù, and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005).
[CrossRef]

1998

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

1994

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, "Optical and dielectric properties of partially resonant composites," Phys. Rev. B 49, 8479-8482 (1994).
[CrossRef]

1975

1972

J. Ward, "Towards invisible glass," Vacuum 22, 369-375 (1972).
[CrossRef]

1968

R. L. Fante, and M. T. McCornack, "Reflection properties of the Salisbury screen," IEEE Trans. Antennas Propag. 30, 1443-1454 (1968).

1962

W. Rotman, "Plasma simulation by artificial dielectrics and parallel-plate media," IRE Trans. Antennas Propag. 10, 82-95 (1962).
[CrossRef]

Alù, A.

A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt Express 14, 1557-1567 (2006).
[CrossRef] [PubMed]

A. Alù, and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Engheta, N.

A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt Express 14, 1557-1567 (2006).
[CrossRef] [PubMed]

A. Alù, and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Fante, R. L.

R. L. Fante, and M. T. McCornack, "Reflection properties of the Salisbury screen," IEEE Trans. Antennas Propag. 30, 1443-1454 (1968).

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Kerker, M.

Leonhardt, U.

U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

McCornack, M. T.

R. L. Fante, and M. T. McCornack, "Reflection properties of the Salisbury screen," IEEE Trans. Antennas Propag. 30, 1443-1454 (1968).

McPhedran, R. C.

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, "Optical and dielectric properties of partially resonant composites," Phys. Rev. B 49, 8479-8482 (1994).
[CrossRef]

Milton, G. W.

G. W. Milton, and N. A. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. Lond. A: Math. Phys. Sci. 462, 3027-59 (2006).
[CrossRef]

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, "Optical and dielectric properties of partially resonant composites," Phys. Rev. B 49, 8479-8482 (1994).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Nicorovici, N. A.

G. W. Milton, and N. A. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. Lond. A: Math. Phys. Sci. 462, 3027-59 (2006).
[CrossRef]

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, "Optical and dielectric properties of partially resonant composites," Phys. Rev. B 49, 8479-8482 (1994).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

Rotman, W.

W. Rotman, "Plasma simulation by artificial dielectrics and parallel-plate media," IRE Trans. Antennas Propag. 10, 82-95 (1962).
[CrossRef]

Salandrino, A.

A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt Express 14, 1557-1567 (2006).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

Ward, J.

J. Ward, "Towards invisible glass," Vacuum 22, 369-375 (1972).
[CrossRef]

IEEE Trans. Antennas Propag.

R. L. Fante, and M. T. McCornack, "Reflection properties of the Salisbury screen," IEEE Trans. Antennas Propag. 30, 1443-1454 (1968).

IRE Trans. Antennas Propag.

W. Rotman, "Plasma simulation by artificial dielectrics and parallel-plate media," IRE Trans. Antennas Propag. 10, 82-95 (1962).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Condens. Matter

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

Opt Express

A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt Express 14, 1557-1567 (2006).
[CrossRef] [PubMed]

Phys. Rev. B

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, "Optical and dielectric properties of partially resonant composites," Phys. Rev. B 49, 8479-8482 (1994).
[CrossRef]

Phys. Rev. E

A. Alù, and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Proc. R. Soc. Lond. A: Math. Phys. Sci.

G. W. Milton, and N. A. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. Lond. A: Math. Phys. Sci. 462, 3027-59 (2006).
[CrossRef]

Science

U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Vacuum

J. Ward, "Towards invisible glass," Vacuum 22, 369-375 (1972).
[CrossRef]

Other

L. Landau, and E. M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, UK, 1984).

R. W. Ziolkowski, and N. Engheta, (guest eds.), IEEE Trans. Antennas Propag. 51, 2546-2750 (2003).
[CrossRef]

J. A. Stratton, Electromagnetic Theory (McGraw-Hill Comp., New York and London, 1941).

C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

CST Microwave StudioTM 5.0, CST of America, Inc., www.cst.com.

R. E. Collin, Field Theory of Guided Waves, (IEEE Press, New York, 1991).

Supplementary Material (13)

» Media 1: GIF (1836 KB)     
» Media 2: GIF (1964 KB)     
» Media 3: GIF (1961 KB)     
» Media 4: GIF (2272 KB)     
» Media 5: GIF (1739 KB)     
» Media 6: GIF (2222 KB)     
» Media 7: GIF (2736 KB)     
» Media 8: GIF (3040 KB)     
» Media 9: GIF (2538 KB)     
» Media 10: GIF (2332 KB)     
» Media 11: GIF (2306 KB)     
» Media 12: GIF (2468 KB)     
» Media 13: GIF (2469 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

(Left panel) Amplitude of the total electric field distribution in the H plane x = 0 under plane wave excitation at f = f 0 for: an impenetrable sphere with diameter equal to 0.4λ 0 ; (Right panel) the same sphere with the proper cloaking cover to reduce its scattering. The electric field is orthogonal to the plane of the figure.

Fig. 2.
Fig. 2.

Time-domain total electric field distribution in the H plane x = 0 for the two cases of Fig. 1, i.e., on the left for an uncovered sphere (movie, 1.79 MB) [Media 1] and on the right for the covered sphere (movie, 1.91 MB). [Media 2] The electric field is orthogonal to the plane of the figure.

Fig. 3.
Fig. 3.

Amplitude of the total magnetic field distribution in the E plane y = 0 under plane wave excitation for the same cases as in Fig. 1. The magnetic field is orthogonal to the plane of the figure.

Fig. 4.
Fig. 4.

Time-domain total magnetic field distribution in the E plane y = 0 for the two cases of Fig. 2, i.e., on the left for an uncovered sphere (movie, 1.91 MB) [Media 3] and on the right for the covered sphere (movie, 2.21 MB) [Media 4]. The magnetic field is orthogonal to the plane of the figure.

Fig. 5.
Fig. 5.

Real part of the Poynting vector (power flow) distribution in the H plane x = 0 for the two cases of the uncovered (left) and covered (right) sphere.

Fig. 6.
Fig. 6.

Real part of the Poynting vector (power flow) distribution in the E plane y = 0 for the two cases of the uncovered (left) and covered (right) sphere.

Fig. 7.
Fig. 7.

3-D scattering patterns for the two cases relative to the previous figures. Note that the two plots have two highly different scales.

Fig. 8.
Fig. 8.

Amplitude of the electric near-field distribution in the x = 0 H plane when an electric short dipole directed along x is placed in close proximity of the impenetrable object in the two cases of uncovered (left panel) and covered (right panel) sphere. The electric field is orthogonal to the plane of the figure.

Fig. 9.
Fig. 9.

Time-domain movies for the cases of Fig. 8: the uncovered case on the left (1.69 MB) [Media 5], the covered case on the right (2.16 MB) [Media 6]. The electric field is orthogonal to the plane of the figure.

Fig. 10.
Fig. 10.

Amplitude of the magnetic near-field distribution in the y = 0 plane when an electric short dipole directed along x is placed in close proximity of the impenetrable object in the two cases of uncovered and covered sphere. The magnetic field is orthogonal to the plane of the figure.

Fig. 11.
Fig. 11.

Time-domain movies for the cases of Fig. 10: the uncovered case on the left (1.69 MB) [Media 7], the covered case on the right (2.16 MB) [Media 8]. The magnetic field is orthogonal to the plane of the figure.

Fig. 12.
Fig. 12.

Normalized peak in the scattering cross section for the sphere analyzed in Section 3 with symmetrical cuts in its left and right (black line), top and bottom (red) and front and back (blue), as also indicated by the insets. The dashed lines correspond to the cases in which the corresponding spheres are not cloaked by the metamaterial cover. The dashed green line corresponds to the uncut and uncloaked sphere.

Fig. 13.
Fig. 13.

Time-domain total electric field distribution in the H plane x = 0 for the three cases relative to the covered sphere of Section 3, but applying two symmetrical cuts in the direction of the impinging electric field (left, movie, 2.47 MB) [Media 9], in the direction of the impinging magnetic field (middle, movie, 2.27 MB) [Media 10], and in the direction of propagation of the impinging plane wave (right, movie, 2.25 MB) [Media 11].

Fig. 14.
Fig. 14.

Real part of the Poynting vector (power flow) distribution in the H plane x = 0 (top row) and E plane y = 0 (bottom row) for the three cases of Fig. 13.

Fig. 15.
Fig. 15.

Contour plot of the total SCS for the sphere simulated in Section 3, varying the frequency of operation and the ratio of radii ac /a . Darker regions correspond to lower values of the total SCS.

Fig. 16.
Fig. 16.

Normalized peak in the SCS for the sphere analyzed in Section 3 when the level of losses is varied in the Drude model for the material of the cover. The dashed green line corresponds to the uncloaked sphere.

Fig. 17.
Fig. 17.

Normalized peak in the SCS for the sphere analyzed in Section 3 when small imperfections (roughness) are added as “bumps” or carved as “dimples” in the metallic spherical surface. The black and red dashed lines refer to the cases where the corresponding spheres are uncovered. The dashed green line corresponds to the uncovered original sphere with no bumps or dimples.

Fig. 18.
Fig. 18.

Time-domain (movie) total electric field distribution in the H plane x = 0 for the two cases of Fig. 17, i.e., on the left for a cloaked sphere with bumps (movie, 2.41 MB) [Media 12] and on the right for the cloaked sphere with holes (movie, 2.41 MB) [Media 13]. The electric field is orthogonal to the plane of the figure.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

j 1 ( ka ) j 1 ( k c a ) y 1 ( k c a ) 0 [ ka j 1 ( ka ) ] ε [ k c a j 1 ( k c a ) ] ε c [ k c a y 1 ( k c a ) ] ε c 0 0 j 1 ( k c a c ) y 1 ( k c a c ) j 1 ( k 0 a c ) 0 [ k c a c j 1 ( k c a c ) ] ε c [ k c a c y 1 ( k c a c ) ] ε c [ k 0 a c j 1 ( k 0 a c ) ] ε 0 = 0 ,

Metrics