Abstract

We propose a new all fiber Mach-Zehnder-Sagnac hybrid inter-ferometer topology for precision sensing. This configuration utilizes a high coherence laser source, mitigates the effects of Rayleigh backscatter and polarization wander, while eliminating scale factor drift. We also present preliminary experimental results, using telecommunications grade single mode fiber and fiber couplers, to demonstrate its principle of operation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Optical Fiber Rotation Sensing, W. K. Burns, ed., (Academic Press Inc. 1250 Sixth Avenue, San Diego, CA, 1993).
  2. N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, "Interferometric, modulation-free laser stabilization," Opt. Lett. 27, 1905-1907 (2002).
    [CrossRef]
  3. J. Hwang, M. M. Fejer, andW. E. Moerner, "Scanning interferometric microscopy for the detection of ultrasmall phase shifts in condensed matter," Phys. Rev. A 73, 021802-1 to 021802-4 (2006).
    [CrossRef]
  4. J. H. Haywood, I. M. Bassett, and M. Matar, "Application of the NIMI technique to the 3x3 Sagnac fibre optic current sensor - experimental results," Optical Fiber Sensors Conference Technical Digest 1, 553-556 (2002).
  5. K-X. Sun,M.M. Fejer, E. Gustafson, and R. L. Byer, "Sagnac Interferometer for Gravitational-Wave Detection," Phys. Rev. Lett. 76, 3053-3056 (1996).
    [CrossRef] [PubMed]
  6. J-Y. Vinet, B. Meers, C. M. Man, and A. Brillet, "Optimization of long-baseline optical interferometers for gravitational-wave detection," Phys. Rev. D 38, 433-447 (1988).
    [CrossRef]
  7. A. A. Chtcherbakov, P. L. Swart, and S. J. Spammer, "Mach-Zehnder and modified Sagnac-distributed fiber-optic impact sensor," Appl. Opt. 37, 3432-3437 (1998).
    [CrossRef]
  8. S-C. Huang, W-W. Lin, M-T. Tsai, and M-H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sensors and Actuators A, in press.
  9. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed., (Cambridge University Press, New York, New York, 1997).
    [PubMed]
  10. F. Schliep, D. Garus, and R. Hereth, "Polarisation dependence of the phase shift of 2x2 single mode fibre directional coupler," Electtron. Lett. 30, 78-80 (1994).
    [CrossRef]
  11. A. Yariv, Optical Electronics in Modern Communications, 5th ed., (Oxford University Press, New York, New York, 1997).
  12. X. Zhu, D. Cassidy, "Modulation spectroscopy with a semiconductor diode laser by injection-current modulation," J. Opt. Soc. Am. B 14, 1945-1950 (1997).
    [CrossRef]

2002 (1)

1998 (1)

1997 (1)

1996 (1)

K-X. Sun,M.M. Fejer, E. Gustafson, and R. L. Byer, "Sagnac Interferometer for Gravitational-Wave Detection," Phys. Rev. Lett. 76, 3053-3056 (1996).
[CrossRef] [PubMed]

1994 (1)

F. Schliep, D. Garus, and R. Hereth, "Polarisation dependence of the phase shift of 2x2 single mode fibre directional coupler," Electtron. Lett. 30, 78-80 (1994).
[CrossRef]

1988 (1)

J-Y. Vinet, B. Meers, C. M. Man, and A. Brillet, "Optimization of long-baseline optical interferometers for gravitational-wave detection," Phys. Rev. D 38, 433-447 (1988).
[CrossRef]

Brillet, A.

J-Y. Vinet, B. Meers, C. M. Man, and A. Brillet, "Optimization of long-baseline optical interferometers for gravitational-wave detection," Phys. Rev. D 38, 433-447 (1988).
[CrossRef]

Byer, R. L.

K-X. Sun,M.M. Fejer, E. Gustafson, and R. L. Byer, "Sagnac Interferometer for Gravitational-Wave Detection," Phys. Rev. Lett. 76, 3053-3056 (1996).
[CrossRef] [PubMed]

Cassidy, D.

Chen, M-H.

S-C. Huang, W-W. Lin, M-T. Tsai, and M-H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sensors and Actuators A, in press.

Chtcherbakov, A. A.

Close, J. D.

Fejer, M.M.

K-X. Sun,M.M. Fejer, E. Gustafson, and R. L. Byer, "Sagnac Interferometer for Gravitational-Wave Detection," Phys. Rev. Lett. 76, 3053-3056 (1996).
[CrossRef] [PubMed]

Garus, D.

F. Schliep, D. Garus, and R. Hereth, "Polarisation dependence of the phase shift of 2x2 single mode fibre directional coupler," Electtron. Lett. 30, 78-80 (1994).
[CrossRef]

Gray, M. B.

Gustafson, E.

K-X. Sun,M.M. Fejer, E. Gustafson, and R. L. Byer, "Sagnac Interferometer for Gravitational-Wave Detection," Phys. Rev. Lett. 76, 3053-3056 (1996).
[CrossRef] [PubMed]

Hereth, R.

F. Schliep, D. Garus, and R. Hereth, "Polarisation dependence of the phase shift of 2x2 single mode fibre directional coupler," Electtron. Lett. 30, 78-80 (1994).
[CrossRef]

Huang, S-C.

S-C. Huang, W-W. Lin, M-T. Tsai, and M-H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sensors and Actuators A, in press.

Lin, W-W.

S-C. Huang, W-W. Lin, M-T. Tsai, and M-H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sensors and Actuators A, in press.

Man, C. M.

J-Y. Vinet, B. Meers, C. M. Man, and A. Brillet, "Optimization of long-baseline optical interferometers for gravitational-wave detection," Phys. Rev. D 38, 433-447 (1988).
[CrossRef]

Meers, B.

J-Y. Vinet, B. Meers, C. M. Man, and A. Brillet, "Optimization of long-baseline optical interferometers for gravitational-wave detection," Phys. Rev. D 38, 433-447 (1988).
[CrossRef]

Robins, N. P.

Schliep, F.

F. Schliep, D. Garus, and R. Hereth, "Polarisation dependence of the phase shift of 2x2 single mode fibre directional coupler," Electtron. Lett. 30, 78-80 (1994).
[CrossRef]

Shaddock, D. A.

Slagmolen, B. J. J.

Spammer, S. J.

Sun, K-X.

K-X. Sun,M.M. Fejer, E. Gustafson, and R. L. Byer, "Sagnac Interferometer for Gravitational-Wave Detection," Phys. Rev. Lett. 76, 3053-3056 (1996).
[CrossRef] [PubMed]

Swart, P. L.

Tsai, M-T.

S-C. Huang, W-W. Lin, M-T. Tsai, and M-H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sensors and Actuators A, in press.

Vinet, J-Y.

J-Y. Vinet, B. Meers, C. M. Man, and A. Brillet, "Optimization of long-baseline optical interferometers for gravitational-wave detection," Phys. Rev. D 38, 433-447 (1988).
[CrossRef]

Zhu, X.

Appl. Opt. (1)

Electtron. Lett. (1)

F. Schliep, D. Garus, and R. Hereth, "Polarisation dependence of the phase shift of 2x2 single mode fibre directional coupler," Electtron. Lett. 30, 78-80 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. D (1)

J-Y. Vinet, B. Meers, C. M. Man, and A. Brillet, "Optimization of long-baseline optical interferometers for gravitational-wave detection," Phys. Rev. D 38, 433-447 (1988).
[CrossRef]

Phys. Rev. Lett. (1)

K-X. Sun,M.M. Fejer, E. Gustafson, and R. L. Byer, "Sagnac Interferometer for Gravitational-Wave Detection," Phys. Rev. Lett. 76, 3053-3056 (1996).
[CrossRef] [PubMed]

Sensors and Actuators A (1)

S-C. Huang, W-W. Lin, M-T. Tsai, and M-H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sensors and Actuators A, in press.

Other (5)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed., (Cambridge University Press, New York, New York, 1997).
[PubMed]

A. Yariv, Optical Electronics in Modern Communications, 5th ed., (Oxford University Press, New York, New York, 1997).

Optical Fiber Rotation Sensing, W. K. Burns, ed., (Academic Press Inc. 1250 Sixth Avenue, San Diego, CA, 1993).

J. Hwang, M. M. Fejer, andW. E. Moerner, "Scanning interferometric microscopy for the detection of ultrasmall phase shifts in condensed matter," Phys. Rev. A 73, 021802-1 to 021802-4 (2006).
[CrossRef]

J. H. Haywood, I. M. Bassett, and M. Matar, "Application of the NIMI technique to the 3x3 Sagnac fibre optic current sensor - experimental results," Optical Fiber Sensors Conference Technical Digest 1, 553-556 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)


                  Fig. 1.
Fig. 1.

(a). Schematic of a Mach-Zehnder Interferometer with a delay of ΔL in one arm; b) frequency response of the MZI with ΔL = 0.75m


                  Fig. 2.
Fig. 2.

Schematic of the full Sagnac system, including the Mach-Zehnder Interferometer with a delay of δL in one arm. Representations of the expected frequency spectra for the laser carrier, its RF sidebands, and backscattered components, together with their propagation direction, are included at various stages of the hybrid interferometer as they traverse the system.

Fig. 3.
Fig. 3.

Complete optical power transfer, as a function of optical frequency, from input at port Ia, through the system and back to ports Ia and Ib.

Fig. 4.
Fig. 4.

The interferometer schematic showing both signal extraction and locking electronics.

Fig. 5.
Fig. 5.

Backscatter distribution at ports Ia and Ib as a function of optical frequency.

Fig. 6.
Fig. 6.

Plots showing experimental spectral scans of carrier and sidebands at various points of transit in the Mach-Zehnder-Sagnac Interferometer.

Fig. 7.
Fig. 7.

The noise power spectral density of the Mach-Zehnder-Sagnac Interferometer system. A calibrated non-reciprocal phase signal of 400 μrad/√Hz at 116 Hz was introduced in the Sagnac coil.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

E Ia IIc = e j ω L c ( t Iac t IIac t Iad t IIbc e j ω Δ L c ) ,
E Ia IId = e j ω L c ( j t Iac t IIad j t Iad t IIbd e j ω Δ L c ) ,
E Ib IIc = e j ω L c ( j t Ibc t IIac + j t Ibd t IIbc e j ω Δ L c ) ,
E Ib IId = e j ω L c ( t Ibc t IIad + t Ibd t IIbd e j ω Δ L c ) ,
E Ia IIc = E IIc Ia
E Ia IId = E IId Ia
E Ib IIc = E IIc Ib
E Ib IId = E IId Ib
ν mod = c 2 ΔL ,
ϕ phase meter = ϕ cw ϕ ccw ,
T pc = ( 2 sin θ hw cos θ hw sin 2 θ hw cos 2 θ hw sin 2 θ hw cos 2 θ hw 2 sin θ hw cos θ hw )
T delay = ( cos θ rot . sin θ rot . sin θ rot . cos θ rot . )
I in = cos θ in sin θ in
I pc = T pc I in
I delay = T delay I in
I pc = sin [ 2 θ hw θ in ] cos [ 2 θ hw θ in ]
I delay = cos [ θ rot . + θ in ] sin [ θ rot . + θ in ]
θ rot . = 2 θ hw 2 θ in π 2 .
I in = cos [ θ in + π 2 ] sin [ θ in + π 2 ] .
I pc = cos [ 2 θ hw θ in ] sin [ 2 θ hw θ in ]
I delay = cos [ 2 θ hw θ in ] sin [ 2 θ hw θ in ] .

Metrics