Abstract

A novel liquid crystal (LC) wavefront corrector with smooth modal influence functions is proposed and realized. The device consists of a thin layer of planar aligned nematic LC sandwiched between a glass plate with a conductive electrode and a plate made of ceramic material with a very high dielectric constant. Control electrodes are positioned on the back side of the ceramic plate, opposite to the LC. The modal character of the response is determined by spreading of the electric field in the ceramic plate. The device implemented is operating in a reflective (mirror) mode; however, similar principles can be used to build a transmissive device. Low cost and simplicity of control make it a good alternative to continuous face-sheet deformable mirrors.

©2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modal interaction matrix measurement for liquid-crystal corrector: precision evaluation

Quanquan Mu, Zhaoliang Cao, Zenghui Peng, Yonggang Liu, Lifa Hu, Xinghai Lu, and Li Xuan
Opt. Express 17(11) 9330-9336 (2009)

Liquid-crystal adaptive lenses with modal control

A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin
Opt. Lett. 23(13) 992-994 (1998)

Modal liquid crystal array of optical elements

J. F. Algorri, G. D. Love, and V. Urruchi
Opt. Express 21(21) 24809-24818 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. R. Restaino, “On the use of liquid crystal for adaptive optics,” in Optical applications of liquid crystals, L. Vicari, ed. (Institute of Physics Publishing, Bristol, Philadelphia, 2003), p.128.
  2. D. J. Cho, S. T. Thurman, J. T. Donner, and G. M. Morris, “Characteristics of a 128×128 liquid-crystal spatial light modulator for wave-front generation,” Opt. Lett. 23,969–971 (1998).
    [Crossref]
  3. D. Dayton, S. Browne, J. Gonglewski, and S. Restaino, “Characterization and control of a multi-element dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction,” Appl. Opt. 40,2345–2355 (2001).
    [Crossref]
  4. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, “Phase-only liquid-crystal spatial light modulator for wave-front correction with high precision,” Opt. Express 12,6403–6409 (2004).
    [Crossref] [PubMed]
  5. Holoeye Photonics AG, High-resolution LCoS Spatial Light Modulators, http://www.holoeye.com
  6. N. Hashimoto, “Electro holography and active optics,” in Optical applications of liquid crystals, L. Vicari, ed. (Institute of Physics Publishing, Bristol, Philadelphia, 2003), p.105.
  7. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. V. Vdovin, “Liquid crystal adaptive lenses with modal control,” Opt. Lett. 23,992–994 (1998).
    [Crossref]
  8. T.-L. Kelly, A. F. Naumov, M. Y. Loktev, M. A. Rakhmatullin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181,295–301 (2000).
    [Crossref]
  9. G. Vdovin, M. Loktev, and A. Naumov, “On the possibility of intraocular adaptive optics,” Opt. Express 11,810–817 (2003).
    [Crossref] [PubMed]
  10. A. F. Naumov and G. Vdovin, “Multichannel liquid-crystal-based wave-front corrector with modal influence functions,” Opt. Lett. 23,1550–1552 (1998).
    [Crossref]
  11. S. P. Kotova, M. Y. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, G. D. Love, A. F. Naumov, C. D. Saunter, M. Y. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 10,1258–1272 (2002).
    [PubMed]
  12. M. Loktev, G. Vdovin, and I. Guralnik, “Operation modes of a liquid-crystal modal wave-front corrector,” Appl. Opt. 43,2209–2225 (2004).
    [Crossref] [PubMed]
  13. OKO Technologies, FrontSurfer wavefront analysis and control software, http://www.okotech.com
  14. G. D. Love, “Liquid crystal phase modulator for unpolarised light,” Appl. Opt. 32,2222–2223 (1993).
    [Crossref] [PubMed]
  15. V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech House, Boston, 1999).
  16. T. S. Chang and E. E. Loebner, “Crossover frequencies and turn-off time reduction scheme for twisted nematic liquid crystal displays,” Appl. Phys. Lett. 25,1–2 (1974).
    [Crossref]

2004 (2)

2003 (1)

2002 (1)

2001 (1)

2000 (1)

T.-L. Kelly, A. F. Naumov, M. Y. Loktev, M. A. Rakhmatullin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181,295–301 (2000).
[Crossref]

1999 (1)

V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech House, Boston, 1999).

1998 (3)

1993 (1)

1974 (1)

T. S. Chang and E. E. Loebner, “Crossover frequencies and turn-off time reduction scheme for twisted nematic liquid crystal displays,” Appl. Phys. Lett. 25,1–2 (1974).
[Crossref]

Browne, S.

Cao, Z.

Chang, T. S.

T. S. Chang and E. E. Loebner, “Crossover frequencies and turn-off time reduction scheme for twisted nematic liquid crystal displays,” Appl. Phys. Lett. 25,1–2 (1974).
[Crossref]

Chigrinov, V. G.

V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech House, Boston, 1999).

Cho, D. J.

Clark, P.

Dayton, D.

Donner, J. T.

Gonglewski, J.

Guralnik, I.

Guralnik, I. R.

Hashimoto, N.

N. Hashimoto, “Electro holography and active optics,” in Optical applications of liquid crystals, L. Vicari, ed. (Institute of Physics Publishing, Bristol, Philadelphia, 2003), p.105.

Hu, L.

Kelly, T.-L.

T.-L. Kelly, A. F. Naumov, M. Y. Loktev, M. A. Rakhmatullin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181,295–301 (2000).
[Crossref]

Klimov, N. A.

Kotova, S. P.

Kvashnin, M. Y.

Li, D.

Liu, Y.

Loebner, E. E.

T. S. Chang and E. E. Loebner, “Crossover frequencies and turn-off time reduction scheme for twisted nematic liquid crystal displays,” Appl. Phys. Lett. 25,1–2 (1974).
[Crossref]

Loktev, M.

Loktev, M. Y.

Love, G. D.

Morris, G. M.

Mu, Q.

Naumov, A.

Naumov, A. F.

Rakhmatulin, M. A.

Rakhmatullin, M. A.

T.-L. Kelly, A. F. Naumov, M. Y. Loktev, M. A. Rakhmatullin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181,295–301 (2000).
[Crossref]

Restaino, S.

Restaino, S. R.

S. R. Restaino, “On the use of liquid crystal for adaptive optics,” in Optical applications of liquid crystals, L. Vicari, ed. (Institute of Physics Publishing, Bristol, Philadelphia, 2003), p.128.

Saunter, C. D.

Thurman, S. T.

Toporkova, L. V.

Vdovin, G.

Vdovin, G. V.

Vicari, L.

N. Hashimoto, “Electro holography and active optics,” in Optical applications of liquid crystals, L. Vicari, ed. (Institute of Physics Publishing, Bristol, Philadelphia, 2003), p.105.

Xuan, L.

Zayakin, O. A.

S. P. Kotova, M. Y. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, G. D. Love, A. F. Naumov, C. D. Saunter, M. Y. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 10,1258–1272 (2002).
[PubMed]

T.-L. Kelly, A. F. Naumov, M. Y. Loktev, M. A. Rakhmatullin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181,295–301 (2000).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

T. S. Chang and E. E. Loebner, “Crossover frequencies and turn-off time reduction scheme for twisted nematic liquid crystal displays,” Appl. Phys. Lett. 25,1–2 (1974).
[Crossref]

Opt. Commun. (1)

T.-L. Kelly, A. F. Naumov, M. Y. Loktev, M. A. Rakhmatullin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181,295–301 (2000).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Other (5)

S. R. Restaino, “On the use of liquid crystal for adaptive optics,” in Optical applications of liquid crystals, L. Vicari, ed. (Institute of Physics Publishing, Bristol, Philadelphia, 2003), p.128.

Holoeye Photonics AG, High-resolution LCoS Spatial Light Modulators, http://www.holoeye.com

N. Hashimoto, “Electro holography and active optics,” in Optical applications of liquid crystals, L. Vicari, ed. (Institute of Physics Publishing, Bristol, Philadelphia, 2003), p.105.

OKO Technologies, FrontSurfer wavefront analysis and control software, http://www.okotech.com

V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech House, Boston, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Forming of an influence function in a piston-type (a) and modal-type (b) LC phase modulators.
Fig. 2.
Fig. 2. 3D distribution of the electric potential in the ceramic substrate with the circular actuator on the top and the LC layer on the bottom (a); maximum electric potential at the LC-ceramic interface vs actuator diameter (b); normalized distributions of the electric potential for different actuator diameters (c).
Fig. 3.
Fig. 3. Schematic diagram of a ceramic-based modal LC wavefront corrector and a control unit (a); layout and numbering of actuators for the 19-channel device (b).
Fig. 4.
Fig. 4. Influence function of the central actuator (a); simultaneous response of 2 (b), 4 (c), 7 (d) and 19 (e) actuators; amplitude is 110 V and frequency 1 kHz for all addressed actuators.
Fig. 5.
Fig. 5. Simultaneous response of two adjacent actuators: V 1=V 2=110 V (a); V 1=110 V, V 2=-110 V (b); other actuators are biased at Vi =22 V, i = 3…19, for both patterns.
Fig. 6.
Fig. 6. Simultaneous response of four actuators (central actuator encircled by three adjacent ones): V 1=V 2=V 4=V 6=110V (a); V 1=-110V, V 2=V 4=V 6=110V (b),(c); other actuators are off for both patterns. Interferometric patterns are shown in (a) and (b), and the result of the wavefront measurement with a Shack-Hartmann sensor is shown in (c).
Fig. 7.
Fig. 7. “Coherent” and “incoherent” composition of the influence functions of three actuators: amplitude 110 V and frequency 625 Hz for all three actuators (a); same amplitude, frequencies 625, 1250 and 2500 Hz (b).

Metrics