Abstract

We introduce a non-interferometric single beam method for automated spectral phase characterization and adaptive pulse compression of amplified ultrashort femtosecond pulses taking advantage of third order harmonic generation in air. This new method, air-MIIPS, compensates high-order phase distortions based on multiphoton intrapulse interference phase scan (MIIPS).

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zewail, Femtochemistry - Ultrafast Dynamics of the Chemical Bond, (World Scientific, Singapore, 1994), Vols. 1 and 2.
  2. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulse," Science 282, 919-922 (1998).
    [CrossRef] [PubMed]
  3. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-Element Liquid-Crystal Phase Modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
    [CrossRef]
  4. R. Trebino and D. J. Kane, "Using phase retrieval to measure the intensity and phase of ultrashort pulses - frequency-resolved optical gating," J. Opt. Soc. Am. A 10, 1101-1111 (1993).
    [CrossRef]
  5. C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998).
    [CrossRef]
  6. V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference IV: Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
    [CrossRef] [PubMed]
  7. B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
    [CrossRef]
  8. L. T. Schelhas, J. C. Shane, and M. Dantus, "Advantages of Ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging," Nanomedicine 2, 177-181 (2006).
    [CrossRef]
  9. S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, "Chemical Imaging by Single Pulse Interferometric Coherent Anti-Stokes Raman Scattering Microscopy," J. Phys. Chem. B 110,5196-5204 (2006).
    [CrossRef] [PubMed]
  10. J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Coherent control improves biomedical imaging with ultrashort shaped pulses," J. Photochem. Photobio. A 180, 307-313 (2006).
    [CrossRef]
  11. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference II: Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
    [CrossRef]
  12. Y. Tamaki, K. Midorikawa, and M. Obara, "Phase-matched third-harmonic generation by nonlinear phase shift in a hollow fiber," Appl. Phys. B 67, 59-63 (1998).
    [CrossRef]
  13. C. W. Siders, N. C. Turner, M. C. Downer, A. Babine, A. Stepanov, and A. M. Sergeev, "Blue-shifted third-harmonic generation and correlated self-guiding during ultrafast barrier suppression ionization of subatmospheric density noble gases," J. Opt. Soc. Am. B 13, 330-335 (1996).
    [CrossRef]
  14. S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M. M. Murnane, and H. C. Kapteyn, "16-fs, 1-mu J ultraviolet pulses generated by third-harmonic conversion in air," Opt. Lett. 21, 665-667 (1996).
    [CrossRef] [PubMed]
  15. V. V. Lozovoy and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," ChemPhysChem. 6, 1970-2000 (2005).
    [CrossRef] [PubMed]
  16. M. Dantus, V. V. Lozovoy, and I. Pastirk, "Measurement and repair. The femtosecond Wheatstone bridge," OE Mag. 3, 15-17 (2003).
  17. T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
    [CrossRef]
  18. J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
    [CrossRef]
  19. I. Pastirk, X. Zhu, R. M. Martin, and M. Dantus, "Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS," Opt. Express 14, 8885-8889 (2006).
    [CrossRef] [PubMed]
  20. I. Pastirk, B. Resan, A. Fry, J. MacKay, and M. Dantus, "No loss spectral phase correction and arbitrary phase shaping of regeneratively amplified femtosecond pulses using MIIPS," Opt. Express 14, 9537-9543 (2006).
    [CrossRef] [PubMed]
  21. A. B. Fedotov, N. I. Koroteev, M. M. T. Loy, X. Xiao, and A. M. Zheltikov, "Saturation of third-harmonic generation in plasma of self-induced optical breakdown due to the self-action of 80-fs light pulses," Opt. Commun. 133, 587-595 (1997).
    [CrossRef]
  22. Tissa C. Gunaratne, Xin Zhu, Vadim Lozovoy, Marcos Dantus, "Symmetry of nonlinear optical response to time inversion of shaped femtosecond pulses as a clock of ultrafast dynamics," Chem. Phys.submitted (2007).

2007

Tissa C. Gunaratne, Xin Zhu, Vadim Lozovoy, Marcos Dantus, "Symmetry of nonlinear optical response to time inversion of shaped femtosecond pulses as a clock of ultrafast dynamics," Chem. Phys.submitted (2007).

2006

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
[CrossRef]

L. T. Schelhas, J. C. Shane, and M. Dantus, "Advantages of Ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging," Nanomedicine 2, 177-181 (2006).
[CrossRef]

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, "Chemical Imaging by Single Pulse Interferometric Coherent Anti-Stokes Raman Scattering Microscopy," J. Phys. Chem. B 110,5196-5204 (2006).
[CrossRef] [PubMed]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Coherent control improves biomedical imaging with ultrashort shaped pulses," J. Photochem. Photobio. A 180, 307-313 (2006).
[CrossRef]

B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
[CrossRef]

I. Pastirk, X. Zhu, R. M. Martin, and M. Dantus, "Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS," Opt. Express 14, 8885-8889 (2006).
[CrossRef] [PubMed]

I. Pastirk, B. Resan, A. Fry, J. MacKay, and M. Dantus, "No loss spectral phase correction and arbitrary phase shaping of regeneratively amplified femtosecond pulses using MIIPS," Opt. Express 14, 9537-9543 (2006).
[CrossRef] [PubMed]

2005

V. V. Lozovoy and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," ChemPhysChem. 6, 1970-2000 (2005).
[CrossRef] [PubMed]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
[CrossRef]

2004

2003

M. Dantus, V. V. Lozovoy, and I. Pastirk, "Measurement and repair. The femtosecond Wheatstone bridge," OE Mag. 3, 15-17 (2003).

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference II: Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

1998

Y. Tamaki, K. Midorikawa, and M. Obara, "Phase-matched third-harmonic generation by nonlinear phase shift in a hollow fiber," Appl. Phys. B 67, 59-63 (1998).
[CrossRef]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulse," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998).
[CrossRef]

1997

A. B. Fedotov, N. I. Koroteev, M. M. T. Loy, X. Xiao, and A. M. Zheltikov, "Saturation of third-harmonic generation in plasma of self-induced optical breakdown due to the self-action of 80-fs light pulses," Opt. Commun. 133, 587-595 (1997).
[CrossRef]

1996

1993

1992

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-Element Liquid-Crystal Phase Modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulse," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Babine, A.

Backus, S.

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulse," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulse," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Brixner, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulse," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Caster, A. G.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, "Chemical Imaging by Single Pulse Interferometric Coherent Anti-Stokes Raman Scattering Microscopy," J. Phys. Chem. B 110,5196-5204 (2006).
[CrossRef] [PubMed]

Dantus, M.

I. Pastirk, X. Zhu, R. M. Martin, and M. Dantus, "Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS," Opt. Express 14, 8885-8889 (2006).
[CrossRef] [PubMed]

L. T. Schelhas, J. C. Shane, and M. Dantus, "Advantages of Ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging," Nanomedicine 2, 177-181 (2006).
[CrossRef]

I. Pastirk, B. Resan, A. Fry, J. MacKay, and M. Dantus, "No loss spectral phase correction and arbitrary phase shaping of regeneratively amplified femtosecond pulses using MIIPS," Opt. Express 14, 9537-9543 (2006).
[CrossRef] [PubMed]

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
[CrossRef]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Coherent control improves biomedical imaging with ultrashort shaped pulses," J. Photochem. Photobio. A 180, 307-313 (2006).
[CrossRef]

B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
[CrossRef]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
[CrossRef]

V. V. Lozovoy and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," ChemPhysChem. 6, 1970-2000 (2005).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference IV: Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

M. Dantus, V. V. Lozovoy, and I. Pastirk, "Measurement and repair. The femtosecond Wheatstone bridge," OE Mag. 3, 15-17 (2003).

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference II: Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

Dela Cruz, J. M.

B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
[CrossRef]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Coherent control improves biomedical imaging with ultrashort shaped pulses," J. Photochem. Photobio. A 180, 307-313 (2006).
[CrossRef]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
[CrossRef]

Downer, M. C.

Fedotov, A. B.

A. B. Fedotov, N. I. Koroteev, M. M. T. Loy, X. Xiao, and A. M. Zheltikov, "Saturation of third-harmonic generation in plasma of self-induced optical breakdown due to the self-action of 80-fs light pulses," Opt. Commun. 133, 587-595 (1997).
[CrossRef]

Fry, A.

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulse," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Gross, A.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
[CrossRef]

Gunaratne, T.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
[CrossRef]

Gunn, J. M.

Iaconis, C.

Kane, D. J.

Kangas, M.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
[CrossRef]

Kapteyn, H. C.

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulse," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Koroteev, N. I.

A. B. Fedotov, N. I. Koroteev, M. M. T. Loy, X. Xiao, and A. M. Zheltikov, "Saturation of third-harmonic generation in plasma of self-induced optical breakdown due to the self-action of 80-fs light pulses," Opt. Commun. 133, 587-595 (1997).
[CrossRef]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-Element Liquid-Crystal Phase Modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Leone, S. R.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, "Chemical Imaging by Single Pulse Interferometric Coherent Anti-Stokes Raman Scattering Microscopy," J. Phys. Chem. B 110,5196-5204 (2006).
[CrossRef] [PubMed]

Lim, S. H.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, "Chemical Imaging by Single Pulse Interferometric Coherent Anti-Stokes Raman Scattering Microscopy," J. Phys. Chem. B 110,5196-5204 (2006).
[CrossRef] [PubMed]

Loy, M. M. T.

A. B. Fedotov, N. I. Koroteev, M. M. T. Loy, X. Xiao, and A. M. Zheltikov, "Saturation of third-harmonic generation in plasma of self-induced optical breakdown due to the self-action of 80-fs light pulses," Opt. Commun. 133, 587-595 (1997).
[CrossRef]

Lozovoy, V. V.

B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
[CrossRef]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Coherent control improves biomedical imaging with ultrashort shaped pulses," J. Photochem. Photobio. A 180, 307-313 (2006).
[CrossRef]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
[CrossRef]

V. V. Lozovoy and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," ChemPhysChem. 6, 1970-2000 (2005).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference IV: Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

M. Dantus, V. V. Lozovoy, and I. Pastirk, "Measurement and repair. The femtosecond Wheatstone bridge," OE Mag. 3, 15-17 (2003).

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference II: Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

MacKay, J.

Martin, R. M.

Midorikawa, K.

Y. Tamaki, K. Midorikawa, and M. Obara, "Phase-matched third-harmonic generation by nonlinear phase shift in a hollow fiber," Appl. Phys. B 67, 59-63 (1998).
[CrossRef]

Murnane, M. M.

Nicolet, O.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, "Chemical Imaging by Single Pulse Interferometric Coherent Anti-Stokes Raman Scattering Microscopy," J. Phys. Chem. B 110,5196-5204 (2006).
[CrossRef] [PubMed]

Obara, M.

Y. Tamaki, K. Midorikawa, and M. Obara, "Phase-matched third-harmonic generation by nonlinear phase shift in a hollow fiber," Appl. Phys. B 67, 59-63 (1998).
[CrossRef]

Pastirk, I.

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-Element Liquid-Crystal Phase Modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Peatross, J.

Resan, B.

Rundquist, A.

Schelhas, L. T.

L. T. Schelhas, J. C. Shane, and M. Dantus, "Advantages of Ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging," Nanomedicine 2, 177-181 (2006).
[CrossRef]

Sergeev, A. M.

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulse," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Shane, J. C.

L. T. Schelhas, J. C. Shane, and M. Dantus, "Advantages of Ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging," Nanomedicine 2, 177-181 (2006).
[CrossRef]

Siders, C. W.

Singh, S.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
[CrossRef]

Stepanov, A.

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulse," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Taft, G.

Tamaki, Y.

Y. Tamaki, K. Midorikawa, and M. Obara, "Phase-matched third-harmonic generation by nonlinear phase shift in a hollow fiber," Appl. Phys. B 67, 59-63 (1998).
[CrossRef]

Tissa,

Tissa C. Gunaratne, Xin Zhu, Vadim Lozovoy, Marcos Dantus, "Symmetry of nonlinear optical response to time inversion of shaped femtosecond pulses as a clock of ultrafast dynamics," Chem. Phys.submitted (2007).

Trebino, R.

Turner, N. C.

Walmsley, I. A.

Walowicz, K. A.

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference II: Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

Weiner, A. M.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-Element Liquid-Crystal Phase Modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-Element Liquid-Crystal Phase Modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Xiao, X.

A. B. Fedotov, N. I. Koroteev, M. M. T. Loy, X. Xiao, and A. M. Zheltikov, "Saturation of third-harmonic generation in plasma of self-induced optical breakdown due to the self-action of 80-fs light pulses," Opt. Commun. 133, 587-595 (1997).
[CrossRef]

Xu, B. W.

Zeek, Z.

Zheltikov, A. M.

A. B. Fedotov, N. I. Koroteev, M. M. T. Loy, X. Xiao, and A. M. Zheltikov, "Saturation of third-harmonic generation in plasma of self-induced optical breakdown due to the self-action of 80-fs light pulses," Opt. Commun. 133, 587-595 (1997).
[CrossRef]

Zhu, X.

Appl. Phys. B

Y. Tamaki, K. Midorikawa, and M. Obara, "Phase-matched third-harmonic generation by nonlinear phase shift in a hollow fiber," Appl. Phys. B 67, 59-63 (1998).
[CrossRef]

Chem. Phys.

Tissa C. Gunaratne, Xin Zhu, Vadim Lozovoy, Marcos Dantus, "Symmetry of nonlinear optical response to time inversion of shaped femtosecond pulses as a clock of ultrafast dynamics," Chem. Phys.submitted (2007).

Chem. Phys. Lett.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
[CrossRef]

ChemPhysChem.

V. V. Lozovoy and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," ChemPhysChem. 6, 1970-2000 (2005).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-Element Liquid-Crystal Phase Modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

J. Chem. Phys.

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference II: Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Photochem. Photobio. A

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Coherent control improves biomedical imaging with ultrashort shaped pulses," J. Photochem. Photobio. A 180, 307-313 (2006).
[CrossRef]

J. Phys. Chem. A

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
[CrossRef]

J. Phys. Chem. B

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, "Chemical Imaging by Single Pulse Interferometric Coherent Anti-Stokes Raman Scattering Microscopy," J. Phys. Chem. B 110,5196-5204 (2006).
[CrossRef] [PubMed]

Nanomedicine

L. T. Schelhas, J. C. Shane, and M. Dantus, "Advantages of Ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging," Nanomedicine 2, 177-181 (2006).
[CrossRef]

OE Mag.

M. Dantus, V. V. Lozovoy, and I. Pastirk, "Measurement and repair. The femtosecond Wheatstone bridge," OE Mag. 3, 15-17 (2003).

Opt. Commun.

A. B. Fedotov, N. I. Koroteev, M. M. T. Loy, X. Xiao, and A. M. Zheltikov, "Saturation of third-harmonic generation in plasma of self-induced optical breakdown due to the self-action of 80-fs light pulses," Opt. Commun. 133, 587-595 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Science

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulse," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Other

A. Zewail, Femtochemistry - Ultrafast Dynamics of the Chemical Bond, (World Scientific, Singapore, 1994), Vols. 1 and 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(top) A schematic of the experimental setup is shown (bottom), along with the spectra for the fundamental, the SHG produced in a BBO crystal, and the THG produced in air. The dashed lines indicate the calculated SHG and THG spectra based on the fundamental spectrum and constant nonlinear susceptibilities.

Fig.2.
Fig.2.

Normalized intensity dependent fundamental spectrum (top) and third harmonic spectrum (bottom) after a 50 mm focal length mirror produced by transformed limited pulses.

Fig. 3.
Fig. 3.

(a).Theoretical SHG-MIIPS and air-MIIPS traces of transform limited pulses. (b) Experimental SHG-MIIPS and air-MIIPS traces after compensation. The dashed lines are guides to the eye and coincide with the expected location of the MIIPS features for TL pulses.

Fig. 4.
Fig. 4.

SHG-MIIPS traces (left), and air-MIIPS traces (right) for a) uncompensated, b) +2000 fs2 positive chirp, and c) -2000 fs2 negative chirp. The dashed lines are guides to the eye and coincide with the expected location of the MIIPS features for TL pulses.

Fig. 5.
Fig. 5.

Experimentally retrieved phases using SHG-MIIPS (blue) and air-MIIPS using 25 (μJ (orange) and 100 μJ (purple) with a 50 mm curved mirror. (top) Residual phase distortion after compensation from SHG MIIPS (blue) and air-MIIPS (purple).

Metrics