Abstract

We present a method to achieve flat-top gain spectrum through overlapping multiple gain lines, which can be used to increase slow light bandwidth and relative pulse delay. A tunable gain bandwidth can be realized by changing the number of spectral lines and frequency separation between adjacent spectral lines. We demonstrate the method in a SBS-based slow light system. A phase modulator is used to modulate the phase of the pump wave, generating a pump wave with multi-line spectrum and achieving a Brillouin gain bandwidth of ~ 330 MHz.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, M. G. Herráez, and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005).
    [CrossRef] [PubMed]
  2. K. Y. Song, M. G. Herráez, and L. Thévenaz, "Long optically controlled delays in optical fibers," Opt. Lett. 30, 1782-1784 (2005).
    [CrossRef] [PubMed]
  3. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  4. M. D. Stenner, M. A. Neifeld, Z. M. Zhu, A. M. C. Dawes, and D. J. Gauthier, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995-10002 (2005).
    [CrossRef] [PubMed]
  5. A. Minardo, R. Bernini, and L. Zeni, "Low distortion Brillouin slow light in optical fibers using AM modulation," Opt. Express 14, 5866-5876 (2006).
    [CrossRef] [PubMed]
  6. M. G. Herráez, K. Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2006).
    [CrossRef]
  7. Z. M. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "12-GHz-bandwidth SBS slow light in optical fibers," in Conference on Optical Fiber Communication (OFC 2006), paper PDP1.
  8. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
    [CrossRef] [PubMed]
  9. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005).
    [CrossRef] [PubMed]
  10. E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, "Large tunable delay with low distortion of 10 Gbit/s data in a slow light system based on narrow band fiber parametric amplification," Opt. Express 14, 8540-8545 (2006).
    [CrossRef] [PubMed]
  11. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigeow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
    [CrossRef]
  12. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71, 023801 (2005).
    [CrossRef]
  13. R. W. Boyd and D. J. Gauthier, "‘Slow’ and ‘Fast’ Light" in Progress in Optics43, E. Wolf, ed. (Elsevier, Amsterdam, 2002), 497-530.

2006 (4)

2005 (7)

Bernini, R.

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Bigeow, M. S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigeow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

Blit, R.

Boyd, R. W.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigeow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Dahan, D.

Dawes, A. M. C.

Eisenstein, G.

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

M. D. Stenner, M. A. Neifeld, Z. M. Zhu, A. M. C. Dawes, and D. J. Gauthier, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995-10002 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Herráez, M. G.

Jarabo, S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigeow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

Lepeshkin, N. N.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigeow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

Minardo, A.

Neifeld, M. A.

Okawachi, Y.

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Schweinsberg, A.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigeow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

Shumakher, E.

Song, K. Y.

Stenner, M. D.

Thévenaz, L.

Willinger, A.

Willner, A. E.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Zeni, L.

Zhu, Z. M.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. D. Stenner, M. A. Neifeld, Z. M. Zhu, A. M. C. Dawes, and D. J. Gauthier, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995-10002 (2005).
[CrossRef] [PubMed]

Europhys. Lett. (1)

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigeow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. A (1)

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Other (2)

Z. M. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "12-GHz-bandwidth SBS slow light in optical fibers," in Conference on Optical Fiber Communication (OFC 2006), paper PDP1.

R. W. Boyd and D. J. Gauthier, "‘Slow’ and ‘Fast’ Light" in Progress in Optics43, E. Wolf, ed. (Elsevier, Amsterdam, 2002), 497-530.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The total gain spectrum with δ/γ=1(a) and δ/γ=2 (c), and their corresponding summation refractive index (b) and (d) by overlapping different spectral lines.

Fig. 2.
Fig. 2.

Experimental setup. P: polarizer; PM: phase modulator; EDFA: Erbium-doped fiber amplifier; VOA: variable optical attenuator; OC: optical circulator; PC: polarizer controller; IM: intensity modulator; OI: optical isolator; D: detector.

Fig. 3.
Fig. 3.

The modulation signal of a sine wave (a) and the corresponding output pump spectrum (b); the modulation signal of a distorted sine wave (c) and the corresponding output pump spectrum (d).

Fig. 4.
Fig. 4.

The spectrum of the modulation signal shown in Fig. 3(c). (a) and (b) are amplitude and phase of basic frequency and harmonic waves, respectively.

Fig. 5.
Fig. 5.

The input pulse width is 6 ns (a) and 4.2 ns (b) and different curves represent temporal evolution of input Stokes pulse (solid lines), output Stokes pulse in three equal-amplitude spectral lines (dot lines) and output Stokes pulse in five equal-amplitude spectral lines (dashed lines).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A ( ω , z ) = A ( ω , 0 ) exp ( ik ( ω ) z )
k ( ω ) = ω c n 0 + g 0 z γ υ + g 0 z n = 1 m ( γ ( υ n δ ) + + γ ( υ + n δ ) + )
G = g 0 z γ 2 υ 2 + γ 2 + g 0 z n = 1 m ( γ 2 ( υ n δ ) 2 + γ 2 + γ 2 ( υ + n δ ) 2 + γ 2 )
n s = n 0 + c g 0 ωz υγ υ 2 + γ 2 + c g 0 ωz n = 1 m ( ( υ n δ ) γ ( υ n δ ) 2 + γ 2 + ( υ + n δ ) γ ( υ + n δ ) 2 + γ 2 )

Metrics