Abstract

We present here an optical add-drop filter (ADF) design based on ultra-compact photonic crystal ring resonators (PCRRs). The normalized transmission spectra for single-ring and dual-ring configurations have been investigated by using the two-dimensional finite-difference time-domain (FDTD) technique in a square lattice dielectric-rod photonic-crystal structure. With the introduction of four scatterers at the corners of quasi-square-ring PCRR, high wavelength selectivity and close to 100% drop efficiency can be obtained. Both backward- and forward-dropping were achieved by controlling the coupling efficiency between two PCRR rings for resonant modes with different symmetry. The resonant-mode quality factor Q and the wavelength tunability were also analyzed, opening opportunities for PCRRs as ultra-compact filters, optical add-drop multiplexers, electrooptical N × N switches and electrooptical modulators.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref, "Silicon-based optoelectronics," Proc. IEEE 81,1687-1706 (1993).
    [CrossRef]
  2. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15,998-1005 (1997).
    [CrossRef]
  3. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Channel drop filters in photonic crystals," Opt. Express 3,4-11 (1998).
    [CrossRef] [PubMed]
  4. M. Lipson, "Guiding, Modulating and Emitting Light on Silicon - Challenges and Opportunities (Invited)," IEEE J. Lightwave Technol. 23,4222-4238 (2005).
    [CrossRef]
  5. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12,1551-1561 (2004).
    [CrossRef] [PubMed]
  6. B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. Haus, E. Ippen, L. C. Kimberling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10,549-551 (1998).
    [CrossRef]
  7. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431,1081-1084 (2004).
    [CrossRef] [PubMed]
  8. T. Barwicz, M. Popovic, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis," Opt. Express 12,1437-1442 (2004).
    [CrossRef] [PubMed]
  9. B. E. Little, J. P. Laine, and S. T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22,4-6 (1997).
    [CrossRef] [PubMed]
  10. S. Noda and T. Baba, Roadmap on Photonic Crystals, 1st ed. (Springer, 2003).
  11. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997).
    [CrossRef]
  12. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in Silicon-on-insulator," Opt. Express 12,1583-1591 (2004).
    [CrossRef] [PubMed]
  13. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751-5758 (1999).
    [CrossRef]
  14. Z. Zhang and M. Qiu, "Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs," Opt. Express 13,2596-2604 (2005).
    [CrossRef] [PubMed]
  15. S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11,2927-2939 (2003).
    [CrossRef] [PubMed]
  16. S.-H. Kim, H. Y. Ryu, H. G. Park, G.-H. Kim, Y.-S. Choi, and Y. H. Lee, "Two-dimensional photonic crsytal hexagonal waveguide ring laser," Appl. Phys. Lett. 81,2499-2501 (2002).
    [CrossRef]
  17. V. Dinesh Kumar, T. Srinivas, A. Selvarajan, "Investigation of ring resonators in photonic crystal circuits", Photonics and Nanostructures 2, 199-206 (2004).
    [CrossRef]
  18. J. Romero-Vivas, D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres, "Resonant add-drop filter based on a photonic quasicrystal," Opt. Express 13,826-835 (2005).
    [CrossRef] [PubMed]
  19. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35,1322-1331 (1999).
    [CrossRef]
  20. M. Tokushima, H. Yamada, and Y. Arakawa, "1.5-µm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab," Appl. Phys. Lett. 84,4298-4300 (2004).
    [CrossRef]
  21. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80,960-963 (1998).
    [CrossRef]
  22. K. Sakoda, "Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices," Phys. Rev. B 52,7982-7986 (1995).
    [CrossRef]
  23. S. H. Kim and Y. H. Lee, "Symmetry relations of two-dimensional photonic crystal cavity modes," IEEE J. Quantum Electron. 39,1081-1085 (2003).
    [CrossRef]

2005 (3)

2004 (6)

2003 (2)

S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11,2927-2939 (2003).
[CrossRef] [PubMed]

S. H. Kim and Y. H. Lee, "Symmetry relations of two-dimensional photonic crystal cavity modes," IEEE J. Quantum Electron. 39,1081-1085 (2003).
[CrossRef]

2002 (1)

S.-H. Kim, H. Y. Ryu, H. G. Park, G.-H. Kim, Y.-S. Choi, and Y. H. Lee, "Two-dimensional photonic crsytal hexagonal waveguide ring laser," Appl. Phys. Lett. 81,2499-2501 (2002).
[CrossRef]

1999 (2)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751-5758 (1999).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35,1322-1331 (1999).
[CrossRef]

1998 (3)

B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. Haus, E. Ippen, L. C. Kimberling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10,549-551 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80,960-963 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Channel drop filters in photonic crystals," Opt. Express 3,4-11 (1998).
[CrossRef] [PubMed]

1997 (3)

B. E. Little, J. P. Laine, and S. T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22,4-6 (1997).
[CrossRef] [PubMed]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15,998-1005 (1997).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997).
[CrossRef]

1995 (1)

K. Sakoda, "Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices," Phys. Rev. B 52,7982-7986 (1995).
[CrossRef]

1993 (1)

R. A. Soref, "Silicon-based optoelectronics," Proc. IEEE 81,1687-1706 (1993).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431,1081-1084 (2004).
[CrossRef] [PubMed]

Arakawa, Y.

M. Tokushima, H. Yamada, and Y. Arakawa, "1.5-µm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab," Appl. Phys. Lett. 84,4298-4300 (2004).
[CrossRef]

Baets, R.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431,1081-1084 (2004).
[CrossRef] [PubMed]

Barwicz, T.

Beckx, S.

Bienstman, P.

Bogaerts, W.

Chigrin, D. N.

Choi, Y.-S.

S.-H. Kim, H. Y. Ryu, H. G. Park, G.-H. Kim, Y.-S. Choi, and Y. H. Lee, "Two-dimensional photonic crsytal hexagonal waveguide ring laser," Appl. Phys. Lett. 81,2499-2501 (2002).
[CrossRef]

Chu, S. T.

B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. Haus, E. Ippen, L. C. Kimberling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10,549-551 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15,998-1005 (1997).
[CrossRef]

B. E. Little, J. P. Laine, and S. T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22,4-6 (1997).
[CrossRef] [PubMed]

Dinesh Kumar, V.

V. Dinesh Kumar, T. Srinivas, A. Selvarajan, "Investigation of ring resonators in photonic crystal circuits", Photonics and Nanostructures 2, 199-206 (2004).
[CrossRef]

Dumon, P.

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751-5758 (1999).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35,1322-1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80,960-963 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Channel drop filters in photonic crystals," Opt. Express 3,4-11 (1998).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997).
[CrossRef]

Foresi, J.

B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. Haus, E. Ippen, L. C. Kimberling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10,549-551 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15,998-1005 (1997).
[CrossRef]

Greene, W.

B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. Haus, E. Ippen, L. C. Kimberling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10,549-551 (1998).
[CrossRef]

Haus, H.

T. Barwicz, M. Popovic, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis," Opt. Express 12,1437-1442 (2004).
[CrossRef] [PubMed]

B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. Haus, E. Ippen, L. C. Kimberling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10,549-551 (1998).
[CrossRef]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35,1322-1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80,960-963 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15,998-1005 (1997).
[CrossRef]

Ippen, E.

T. Barwicz, M. Popovic, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis," Opt. Express 12,1437-1442 (2004).
[CrossRef] [PubMed]

B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. Haus, E. Ippen, L. C. Kimberling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10,549-551 (1998).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751-5758 (1999).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35,1322-1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80,960-963 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Channel drop filters in photonic crystals," Opt. Express 3,4-11 (1998).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997).
[CrossRef]

Johnson, S. G.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751-5758 (1999).
[CrossRef]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35,1322-1331 (1999).
[CrossRef]

Kim, G.-H.

S.-H. Kim, H. Y. Ryu, H. G. Park, G.-H. Kim, Y.-S. Choi, and Y. H. Lee, "Two-dimensional photonic crsytal hexagonal waveguide ring laser," Appl. Phys. Lett. 81,2499-2501 (2002).
[CrossRef]

Kim, S. H.

S. H. Kim and Y. H. Lee, "Symmetry relations of two-dimensional photonic crystal cavity modes," IEEE J. Quantum Electron. 39,1081-1085 (2003).
[CrossRef]

Kim, S.-H.

S.-H. Kim, H. Y. Ryu, H. G. Park, G.-H. Kim, Y.-S. Choi, and Y. H. Lee, "Two-dimensional photonic crsytal hexagonal waveguide ring laser," Appl. Phys. Lett. 81,2499-2501 (2002).
[CrossRef]

Kimberling, L. C.

B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. Haus, E. Ippen, L. C. Kimberling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10,549-551 (1998).
[CrossRef]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751-5758 (1999).
[CrossRef]

Kuramochi, E.

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15,998-1005 (1997).
[CrossRef]

B. E. Little, J. P. Laine, and S. T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22,4-6 (1997).
[CrossRef] [PubMed]

Lavrinenko, A. V.

Lee, Y. H.

S. H. Kim and Y. H. Lee, "Symmetry relations of two-dimensional photonic crystal cavity modes," IEEE J. Quantum Electron. 39,1081-1085 (2003).
[CrossRef]

S.-H. Kim, H. Y. Ryu, H. G. Park, G.-H. Kim, Y.-S. Choi, and Y. H. Lee, "Two-dimensional photonic crsytal hexagonal waveguide ring laser," Appl. Phys. Lett. 81,2499-2501 (2002).
[CrossRef]

Lipson, M.

M. Lipson, "Guiding, Modulating and Emitting Light on Silicon - Challenges and Opportunities (Invited)," IEEE J. Lightwave Technol. 23,4222-4238 (2005).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431,1081-1084 (2004).
[CrossRef] [PubMed]

Little, B. E.

B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. Haus, E. Ippen, L. C. Kimberling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10,549-551 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15,998-1005 (1997).
[CrossRef]

B. E. Little, J. P. Laine, and S. T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22,4-6 (1997).
[CrossRef] [PubMed]

Luyssaert, B.

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35,1322-1331 (1999).
[CrossRef]

McNab, S.

Mitsugi, S.

Moll, N.

Notomi, M.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431,1081-1084 (2004).
[CrossRef] [PubMed]

Park, H. G.

S.-H. Kim, H. Y. Ryu, H. G. Park, G.-H. Kim, Y.-S. Choi, and Y. H. Lee, "Two-dimensional photonic crsytal hexagonal waveguide ring laser," Appl. Phys. Lett. 81,2499-2501 (2002).
[CrossRef]

Popovic, M.

Qiu, M.

Rakich, P.

Romero-Vivas, J.

Ryu, H. Y.

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12,1551-1561 (2004).
[CrossRef] [PubMed]

S.-H. Kim, H. Y. Ryu, H. G. Park, G.-H. Kim, Y.-S. Choi, and Y. H. Lee, "Two-dimensional photonic crsytal hexagonal waveguide ring laser," Appl. Phys. Lett. 81,2499-2501 (2002).
[CrossRef]

Sakoda, K.

K. Sakoda, "Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices," Phys. Rev. B 52,7982-7986 (1995).
[CrossRef]

Selvarajan, A.

V. Dinesh Kumar, T. Srinivas, A. Selvarajan, "Investigation of ring resonators in photonic crystal circuits", Photonics and Nanostructures 2, 199-206 (2004).
[CrossRef]

Shinya, A.

Smith, H.

Soref, R. A.

R. A. Soref, "Silicon-based optoelectronics," Proc. IEEE 81,1687-1706 (1993).
[CrossRef]

Sotomayor Torres, C. M.

Srinivas, T.

V. Dinesh Kumar, T. Srinivas, A. Selvarajan, "Investigation of ring resonators in photonic crystal circuits", Photonics and Nanostructures 2, 199-206 (2004).
[CrossRef]

Steinmeyer, G.

B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. Haus, E. Ippen, L. C. Kimberling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10,549-551 (1998).
[CrossRef]

Taillaert, D.

Thoen, E. R.

B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. Haus, E. Ippen, L. C. Kimberling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10,549-551 (1998).
[CrossRef]

Tokushima, M.

M. Tokushima, H. Yamada, and Y. Arakawa, "1.5-µm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab," Appl. Phys. Lett. 84,4298-4300 (2004).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751-5758 (1999).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35,1322-1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80,960-963 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Channel drop filters in photonic crystals," Opt. Express 3,4-11 (1998).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997).
[CrossRef]

Vlasov, Y.

Watts, M.

Wiaux, V.

Yamada, H.

M. Tokushima, H. Yamada, and Y. Arakawa, "1.5-µm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab," Appl. Phys. Lett. 84,4298-4300 (2004).
[CrossRef]

Zhang, Z.

Appl. Phys. Lett. (2)

S.-H. Kim, H. Y. Ryu, H. G. Park, G.-H. Kim, Y.-S. Choi, and Y. H. Lee, "Two-dimensional photonic crsytal hexagonal waveguide ring laser," Appl. Phys. Lett. 81,2499-2501 (2002).
[CrossRef]

M. Tokushima, H. Yamada, and Y. Arakawa, "1.5-µm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab," Appl. Phys. Lett. 84,4298-4300 (2004).
[CrossRef]

IEEE J. Lightwave Technol. (1)

M. Lipson, "Guiding, Modulating and Emitting Light on Silicon - Challenges and Opportunities (Invited)," IEEE J. Lightwave Technol. 23,4222-4238 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35,1322-1331 (1999).
[CrossRef]

S. H. Kim and Y. H. Lee, "Symmetry relations of two-dimensional photonic crystal cavity modes," IEEE J. Quantum Electron. 39,1081-1085 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. Haus, E. Ippen, L. C. Kimberling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10,549-551 (1998).
[CrossRef]

J. Lightwave Technol. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15,998-1005 (1997).
[CrossRef]

Nature (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431,1081-1084 (2004).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Photonics and Nanostructures (1)

V. Dinesh Kumar, T. Srinivas, A. Selvarajan, "Investigation of ring resonators in photonic crystal circuits", Photonics and Nanostructures 2, 199-206 (2004).
[CrossRef]

Phys. Rev. B (2)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751-5758 (1999).
[CrossRef]

K. Sakoda, "Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices," Phys. Rev. B 52,7982-7986 (1995).
[CrossRef]

Phys. Rev. Lett. (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80,960-963 (1998).
[CrossRef]

Proc. IEEE (1)

R. A. Soref, "Silicon-based optoelectronics," Proc. IEEE 81,1687-1706 (1993).
[CrossRef]

Other (1)

S. Noda and T. Baba, Roadmap on Photonic Crystals, 1st ed. (Springer, 2003).

Supplementary Material (3)

» Media 1: GIF (612 KB)     
» Media 2: GIF (624 KB)     
» Media 3: GIF (665 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Photonic crystal ring resonators (PCRRs): (a) Quasi-square ring PCRR in square lattice; (b) Hexagonal ring PCRR in triangular lattice; (c) Circular ring PCRR in quasi-photonic crystal structure (12-fold symmetry as shown).

Fig. 2.
Fig. 2.

Modal properties for the quasi-square PCRRs in a square lattice of dielectric rods: (a) Field pattens of the cavity modes within the spectral range of first photonic bandgap; (b) The corresponding resonant mode wavelengths and the quality factor Qs for these modes in both 3×3 and 2×2 PCRRs. The different modes are: dipole (DI), quadrupole (QUAD); hexapole (HEX), octupole (OCT), and decapole (DEC). The modal degeneracy is denoted with the subscript “0” and “90” (or “45”).

Fig. 3.
Fig. 3.

(a) Single line-defect (W1) photonic crystal waveguide; (b) Dispersion plot and the corresponding defect mode shown as a blue line) in the photonic bandgap region.

Fig. 4.
Fig. 4.

(a) Single-ring PCRR ADF; (b) normalized transmission spectra at three output ports B, C, D for PCRRs with and without scatterers; (c) The electric field patterns for the through (off-resonance: λ0=1500 nm) and drop (on-resonance: λ1=1567 nm) channels.

Fig. 5.
Fig. 5.

Single-ring PCRR based ADF with higher spectral selectivity (Q>1000, δλ=1.5nm at λ1=1571nm), by increasing the coupling periods between W1 waveguide and PCRR cavity from one to two.

Fig. 6.
Fig. 6.

Dual-ring PCRR ADF for backward-dropping: (a) Schematic showing the weakly coupled dual PCRR rings with coupling period of 2a; (b) Normalized transmission spectra; (c) The field patterns of electric field distribution for “through” (off-resonance: λ0=1500nm) and “backward drop” (on-resonance: λ1=1567nm)channels.

Fig. 7.
Fig. 7.

Dual-ring PCRR ADF for forward-dropping: (a) Schematic showing the strongly coupled dual PCRR rings with coupling period of 4a; (b) Normalized transmission spectra; (c) The field patterns of electric field distribution for two “forward drop” channels (on-resonance: λ2=1558 nm, λ3=1574 nm).

Fig. 8.
Fig. 8.

Comparison of Backward- and forward-dropping with the movies shown the different modal propagation directions due to the coupling difference and the modal symmetry. The coupling field relations are labeled with “+” and “-” signs for either even or odd modal coupling. (Movies 612KB, 625KB, 666KB). [Media 1] [Media 2] [Media 3]

Fig. 9.
Fig. 9.

The resonant cavity peak wavelength shifts with the change of the refractive index Δn. The perturbation sections are the ring section (green colored) for air hole PCRRs and the inner dielectric rods (3×3) for dielectric rod PCRR structures.

Metrics