K. Sakoda, “90-degree light scattering by the Menger sponge fractal,” Opt. Express 13,9585–9597 (2005).

[CrossRef]
[PubMed]

K. Sakoda, “Electromagnetic eigenmodes of a three-dimensional photonic fractal,” Phys. Rev. B 72, Art. No.184201 (2005).

[CrossRef]

K. Sakoda, S. Kirihara, Y. Miyamoto, M. Wada-Takeda, and K. Honda, “Light scattering and transmission spectra of the Menger sponge,” Appl. Phys. B, 81,321–324 (2005).

[CrossRef]

M. Wada-Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, “Localization of electromagnetic waves in three-dimensional photonic fractal cavities,” Phys. Rev. Lett. 92, Art. No.093902 (2004).

[CrossRef]

S. Kanehira, S. Kirihara, Y. Miyamoto, K. Sakoda, and M. Takeda, “Microwave properties of photonic crystals composed of ceramic/polymer with lattice defects,” J. Soc. Mat. Sci. Jpn. 53,975–980 (2004).

[CrossRef]

K. Sakoda and H. Shiroma, “Numerical method for localized defect modes in photonic lattices,” Phys. Rev. B 56,4830–4835 (1997).

[CrossRef]

J. Feder, Fractals (Plenum Press, New York, 1988).

K. Sakoda, S. Kirihara, Y. Miyamoto, M. Wada-Takeda, and K. Honda, “Light scattering and transmission spectra of the Menger sponge,” Appl. Phys. B, 81,321–324 (2005).

[CrossRef]

M. Wada-Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, “Localization of electromagnetic waves in three-dimensional photonic fractal cavities,” Phys. Rev. Lett. 92, Art. No.093902 (2004).

[CrossRef]

T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics (Springer-Verlag, Berlin1990).

[CrossRef]

S. Kanehira, S. Kirihara, Y. Miyamoto, K. Sakoda, and M. Takeda, “Microwave properties of photonic crystals composed of ceramic/polymer with lattice defects,” J. Soc. Mat. Sci. Jpn. 53,975–980 (2004).

[CrossRef]

K. Sakoda, S. Kirihara, Y. Miyamoto, M. Wada-Takeda, and K. Honda, “Light scattering and transmission spectra of the Menger sponge,” Appl. Phys. B, 81,321–324 (2005).

[CrossRef]

S. Kanehira, S. Kirihara, Y. Miyamoto, K. Sakoda, and M. Takeda, “Microwave properties of photonic crystals composed of ceramic/polymer with lattice defects,” J. Soc. Mat. Sci. Jpn. 53,975–980 (2004).

[CrossRef]

M. Wada-Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, “Localization of electromagnetic waves in three-dimensional photonic fractal cavities,” Phys. Rev. Lett. 92, Art. No.093902 (2004).

[CrossRef]

B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman & Company, San Francisco, 1982).

K. Sakoda, S. Kirihara, Y. Miyamoto, M. Wada-Takeda, and K. Honda, “Light scattering and transmission spectra of the Menger sponge,” Appl. Phys. B, 81,321–324 (2005).

[CrossRef]

M. Wada-Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, “Localization of electromagnetic waves in three-dimensional photonic fractal cavities,” Phys. Rev. Lett. 92, Art. No.093902 (2004).

[CrossRef]

S. Kanehira, S. Kirihara, Y. Miyamoto, K. Sakoda, and M. Takeda, “Microwave properties of photonic crystals composed of ceramic/polymer with lattice defects,” J. Soc. Mat. Sci. Jpn. 53,975–980 (2004).

[CrossRef]

T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics (Springer-Verlag, Berlin1990).

[CrossRef]

K. Sakoda, “Localized electromagnetic eigenmodes in three-dimensional metallic photonic fractals,” Laser Phys. 16,897–901 (2006).

[CrossRef]

K. Sakoda, “LCAO approximation for scaling properties of the Menger sponge fractal,” Opt. Express 14,11372–11384 (2006).

[CrossRef]
[PubMed]

K. Sakoda, “90-degree light scattering by the Menger sponge fractal,” Opt. Express 13,9585–9597 (2005).

[CrossRef]
[PubMed]

K. Sakoda, “Electromagnetic eigenmodes of a three-dimensional photonic fractal,” Phys. Rev. B 72, Art. No.184201 (2005).

[CrossRef]

K. Sakoda, S. Kirihara, Y. Miyamoto, M. Wada-Takeda, and K. Honda, “Light scattering and transmission spectra of the Menger sponge,” Appl. Phys. B, 81,321–324 (2005).

[CrossRef]

S. Kanehira, S. Kirihara, Y. Miyamoto, K. Sakoda, and M. Takeda, “Microwave properties of photonic crystals composed of ceramic/polymer with lattice defects,” J. Soc. Mat. Sci. Jpn. 53,975–980 (2004).

[CrossRef]

M. Wada-Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, “Localization of electromagnetic waves in three-dimensional photonic fractal cavities,” Phys. Rev. Lett. 92, Art. No.093902 (2004).

[CrossRef]

K. Sakoda and H. Shiroma, “Numerical method for localized defect modes in photonic lattices,” Phys. Rev. B 56,4830–4835 (1997).

[CrossRef]

K. Sakoda, Optical Properties of Photonic Crystals, 2nd Ed. (Springer-Verlag, Berlin, 2004).

K. Sakoda and H. Shiroma, “Numerical method for localized defect modes in photonic lattices,” Phys. Rev. B 56,4830–4835 (1997).

[CrossRef]

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE Press, Piscataway, 2000)

[CrossRef]

A. Taflove, Computational Electrodynamics (Artech House, Boston, 1995).

S. Kanehira, S. Kirihara, Y. Miyamoto, K. Sakoda, and M. Takeda, “Microwave properties of photonic crystals composed of ceramic/polymer with lattice defects,” J. Soc. Mat. Sci. Jpn. 53,975–980 (2004).

[CrossRef]

T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics (Springer-Verlag, Berlin1990).

[CrossRef]

K. Sakoda, S. Kirihara, Y. Miyamoto, M. Wada-Takeda, and K. Honda, “Light scattering and transmission spectra of the Menger sponge,” Appl. Phys. B, 81,321–324 (2005).

[CrossRef]

M. Wada-Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, “Localization of electromagnetic waves in three-dimensional photonic fractal cavities,” Phys. Rev. Lett. 92, Art. No.093902 (2004).

[CrossRef]

K. Sakoda, S. Kirihara, Y. Miyamoto, M. Wada-Takeda, and K. Honda, “Light scattering and transmission spectra of the Menger sponge,” Appl. Phys. B, 81,321–324 (2005).

[CrossRef]

S. Kanehira, S. Kirihara, Y. Miyamoto, K. Sakoda, and M. Takeda, “Microwave properties of photonic crystals composed of ceramic/polymer with lattice defects,” J. Soc. Mat. Sci. Jpn. 53,975–980 (2004).

[CrossRef]

K. Sakoda, “Localized electromagnetic eigenmodes in three-dimensional metallic photonic fractals,” Laser Phys. 16,897–901 (2006).

[CrossRef]

K. Sakoda and H. Shiroma, “Numerical method for localized defect modes in photonic lattices,” Phys. Rev. B 56,4830–4835 (1997).

[CrossRef]

K. Sakoda, “Electromagnetic eigenmodes of a three-dimensional photonic fractal,” Phys. Rev. B 72, Art. No.184201 (2005).

[CrossRef]

M. Wada-Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, “Localization of electromagnetic waves in three-dimensional photonic fractal cavities,” Phys. Rev. Lett. 92, Art. No.093902 (2004).

[CrossRef]

B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman & Company, San Francisco, 1982).

J. Feder, Fractals (Plenum Press, New York, 1988).

T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics (Springer-Verlag, Berlin1990).

[CrossRef]

K. Sakoda, Optical Properties of Photonic Crystals, 2nd Ed. (Springer-Verlag, Berlin, 2004).

A. Taflove, Computational Electrodynamics (Artech House, Boston, 1995).

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE Press, Piscataway, 2000)

[CrossRef]