Abstract

Single-shot time resolved Coherent Anti-Stokes Raman Scattering (CARS) is presented as a viable method for fast measurements of molecular spectra. The method is based on the short spatial extension of femtosecond pulses and maps time delays between pulses onto the region of intersection between broad beams. The image of the emitted CARS signal contains full temporal information on the field-free molecular dynamics, from which spectral information is extracted. The method is demonstrated on liquid samples of CHBr3 and CHCl3 and the Raman spectrum of the low-lying vibrational states of these molecules is measured.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Jonas, “Two-dimensional Femtosecond Spectroscopy,” Ann. Rev. Phys. Chem. 54,425–463 (2003).
    [Crossref]
  2. T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121,4221–4236 (2004).
    [Crossref] [PubMed]
  3. T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis ” Nature 434,625 (2005).
    [Crossref] [PubMed]
  4. M. T. Zanni and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11, (2001).
    [Crossref]
  5. W. Zhao and J. C. Wright, “Doubly Vibrationally enhanced four wave mixing: The Optical Analog to 2D NMR,” Phys. Rev. Lett. 84,1411–1414 (2000).
    [Crossref] [PubMed]
  6. V. Chernyak, W. M. Zhang, and S. Mukamel, “Multidimensional femtosecond spectroscopies of molecular aggregates and semiconductor nanostructures: The nonlinear exciton equations,” J. Chem. Phys. 109,9587–9601 (1998).
    [Crossref]
  7. C. Scheurer and S. Mukamel, “Design strategies for pulse sequences in multidimensional optical spectroscopies,” J. Chem. Phys. 115,4989–5004 (2001).
    [Crossref]
  8. S. Woutersen and P. Hamm, “Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy,” J. Phys. Chem. B 104,11316–11320 (2000).
    [Crossref]
  9. S. Woutersen and P. Hamm, “Time-resolved two-dimensional vibrational spectroscopy of a short alpha-helix in water,” J. Chem. Phys. 115,7737–7743 (2001).
    [Crossref]
  10. J. Park and R. M. Hochstrasser, “Multidimensional infrared spectroscopy of a peptide intramolecular hydrogen bond,” Chem. Phys. 323,78–86 (2006).
    [Crossref]
  11. D. J. Tannor, R. Kosloff, and S. A. Rice, “Coherent pulse sequence induced control of selectivity of reactions - exact Quantum-Mechanical Calculations,” J. Chem. Phys. 85,5805–5820 (1986).
    [Crossref]
  12. I. Pinkas, G. Knopp, and Y. Prior, “Preparation and monitoring of high-ground-state vibrational wavepackets by femtosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 115,236–244 (2001).
    [Crossref]
  13. D. V. Murphy, M. B. Long, R. K. Chang, and A. C. Eckbreth, “Spatially resolved coherent anti-Stokes Raman-Spectroscopy from a line across a CH4 Jet,” Opt. Lett. 4,167–169 (1979).
    [Crossref] [PubMed]
  14. D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, and R. B. Miles, “One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma,” Opt. Lett. 24,478–480 (1999).
    [Crossref]
  15. D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing,” J. Raman Spectrosc. 31,677–687 (2000).
    [Crossref]
  16. M. M. Malley and P. M. Rentzepis, “Picosecond molecular relaxation displayed with crossed laser beams,” Chem. Phys. Lett. 3,534–536 (1969).
    [Crossref]
  17. K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo, and P.David Lee, “Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product,” J. Chem. Phys. 120,3323–3332 (2004).
    [Crossref]
  18. J. T. Fourkas, L. Dhar, K. A. Nelson, and R. Trebino, “Spatially encoded, single-shot ultrafast spectroscopies,” J. Opt. Soc. Am. B 12,155–165 (1995).
    [Crossref]
  19. Y. Makishima, N. Furukawa, A. Ishida, and J. Takeda, “Femtosecond real-time pump-probe imaging spectroscopy implemented on a single shot basis,” Jpn. J. Appl. Phys. 45,5986–5989 (2006).
    [Crossref]
  20. S. Zamith, Z. Ansari, F. Lepine, and M. J. J. Vrakking, “Single-shot measurement of revival structures in femtosecond laser-induced alignment of molecules,” Opt. Lett. 30,2326–2328 (2005).
    [Crossref] [PubMed]
  21. P. R. Poulin and K. A. Nelson, “Irreversible organic crystalline chemistry monitored in real time,” Science 313,1756–1760 (2006).
    [Crossref] [PubMed]
  22. M. F. DeCamp and A. Tokmakoff, “Single-shot two-dimensional spectrometer,” Opt. Lett. 31,113–115 (2006).
    [Crossref] [PubMed]
  23. Y. Prior, “3-dimensional phase matching in 4-wave mixing,” Appl. Opt. 19,1741–1743 (1980).
    [Crossref]
  24. A. N. Naumov and A. M. Zheltikov, “Frequency-time and time-space mappings for single-shot coherent four-wave mixing with chirped pulses and broad beams,” J. Raman Spectrosc. 32,960–970 (2001).
    [Crossref]
  25. A. N. Naumov and A. M. Zheltikov, “Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques,” Appl. Phys. B 77,369–376 (2003).
    [Crossref]
  26. G. Seifert, R. Zurl, T. Patzlaff, and H. Graener, “Time-resolved observation of intermolecular vibrational energy transfer in liquid bromoform,” J. Chem. Phys. 112,6349–6354 (2000).
    [Crossref]

2006 (4)

J. Park and R. M. Hochstrasser, “Multidimensional infrared spectroscopy of a peptide intramolecular hydrogen bond,” Chem. Phys. 323,78–86 (2006).
[Crossref]

Y. Makishima, N. Furukawa, A. Ishida, and J. Takeda, “Femtosecond real-time pump-probe imaging spectroscopy implemented on a single shot basis,” Jpn. J. Appl. Phys. 45,5986–5989 (2006).
[Crossref]

P. R. Poulin and K. A. Nelson, “Irreversible organic crystalline chemistry monitored in real time,” Science 313,1756–1760 (2006).
[Crossref] [PubMed]

M. F. DeCamp and A. Tokmakoff, “Single-shot two-dimensional spectrometer,” Opt. Lett. 31,113–115 (2006).
[Crossref] [PubMed]

2005 (2)

S. Zamith, Z. Ansari, F. Lepine, and M. J. J. Vrakking, “Single-shot measurement of revival structures in femtosecond laser-induced alignment of molecules,” Opt. Lett. 30,2326–2328 (2005).
[Crossref] [PubMed]

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis ” Nature 434,625 (2005).
[Crossref] [PubMed]

2004 (2)

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121,4221–4236 (2004).
[Crossref] [PubMed]

K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo, and P.David Lee, “Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product,” J. Chem. Phys. 120,3323–3332 (2004).
[Crossref]

2003 (2)

A. N. Naumov and A. M. Zheltikov, “Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques,” Appl. Phys. B 77,369–376 (2003).
[Crossref]

D. M. Jonas, “Two-dimensional Femtosecond Spectroscopy,” Ann. Rev. Phys. Chem. 54,425–463 (2003).
[Crossref]

2001 (5)

C. Scheurer and S. Mukamel, “Design strategies for pulse sequences in multidimensional optical spectroscopies,” J. Chem. Phys. 115,4989–5004 (2001).
[Crossref]

M. T. Zanni and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11, (2001).
[Crossref]

I. Pinkas, G. Knopp, and Y. Prior, “Preparation and monitoring of high-ground-state vibrational wavepackets by femtosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 115,236–244 (2001).
[Crossref]

S. Woutersen and P. Hamm, “Time-resolved two-dimensional vibrational spectroscopy of a short alpha-helix in water,” J. Chem. Phys. 115,7737–7743 (2001).
[Crossref]

A. N. Naumov and A. M. Zheltikov, “Frequency-time and time-space mappings for single-shot coherent four-wave mixing with chirped pulses and broad beams,” J. Raman Spectrosc. 32,960–970 (2001).
[Crossref]

2000 (4)

G. Seifert, R. Zurl, T. Patzlaff, and H. Graener, “Time-resolved observation of intermolecular vibrational energy transfer in liquid bromoform,” J. Chem. Phys. 112,6349–6354 (2000).
[Crossref]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing,” J. Raman Spectrosc. 31,677–687 (2000).
[Crossref]

W. Zhao and J. C. Wright, “Doubly Vibrationally enhanced four wave mixing: The Optical Analog to 2D NMR,” Phys. Rev. Lett. 84,1411–1414 (2000).
[Crossref] [PubMed]

S. Woutersen and P. Hamm, “Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy,” J. Phys. Chem. B 104,11316–11320 (2000).
[Crossref]

1999 (1)

1998 (1)

V. Chernyak, W. M. Zhang, and S. Mukamel, “Multidimensional femtosecond spectroscopies of molecular aggregates and semiconductor nanostructures: The nonlinear exciton equations,” J. Chem. Phys. 109,9587–9601 (1998).
[Crossref]

1995 (1)

1986 (1)

D. J. Tannor, R. Kosloff, and S. A. Rice, “Coherent pulse sequence induced control of selectivity of reactions - exact Quantum-Mechanical Calculations,” J. Chem. Phys. 85,5805–5820 (1986).
[Crossref]

1980 (1)

1979 (1)

1969 (1)

M. M. Malley and P. M. Rentzepis, “Picosecond molecular relaxation displayed with crossed laser beams,” Chem. Phys. Lett. 3,534–536 (1969).
[Crossref]

Akimov, D. A.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing,” J. Raman Spectrosc. 31,677–687 (2000).
[Crossref]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, and R. B. Miles, “One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma,” Opt. Lett. 24,478–480 (1999).
[Crossref]

Ansari, Z.

Blankenship, R. E.

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis ” Nature 434,625 (2005).
[Crossref] [PubMed]

Brixner, T.

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis ” Nature 434,625 (2005).
[Crossref] [PubMed]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121,4221–4236 (2004).
[Crossref] [PubMed]

Chang, R. K.

Chernyak, V.

V. Chernyak, W. M. Zhang, and S. Mukamel, “Multidimensional femtosecond spectroscopies of molecular aggregates and semiconductor nanostructures: The nonlinear exciton equations,” J. Chem. Phys. 109,9587–9601 (1998).
[Crossref]

Cho, M.

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis ” Nature 434,625 (2005).
[Crossref] [PubMed]

Cunyuan, Z.

K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo, and P.David Lee, “Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product,” J. Chem. Phys. 120,3323–3332 (2004).
[Crossref]

DeCamp, M. F.

Dhar, L.

Eckbreth, A. C.

Fedotov, A. B.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing,” J. Raman Spectrosc. 31,677–687 (2000).
[Crossref]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, and R. B. Miles, “One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma,” Opt. Lett. 24,478–480 (1999).
[Crossref]

Fleming, G. R.

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis ” Nature 434,625 (2005).
[Crossref] [PubMed]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121,4221–4236 (2004).
[Crossref] [PubMed]

Fourkas, J. T.

Furukawa, N.

Y. Makishima, N. Furukawa, A. Ishida, and J. Takeda, “Femtosecond real-time pump-probe imaging spectroscopy implemented on a single shot basis,” Jpn. J. Appl. Phys. 45,5986–5989 (2006).
[Crossref]

Graener, H.

G. Seifert, R. Zurl, T. Patzlaff, and H. Graener, “Time-resolved observation of intermolecular vibrational energy transfer in liquid bromoform,” J. Chem. Phys. 112,6349–6354 (2000).
[Crossref]

Hamm, P.

S. Woutersen and P. Hamm, “Time-resolved two-dimensional vibrational spectroscopy of a short alpha-helix in water,” J. Chem. Phys. 115,7737–7743 (2001).
[Crossref]

S. Woutersen and P. Hamm, “Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy,” J. Phys. Chem. B 104,11316–11320 (2000).
[Crossref]

Hochstrasser, R. M.

J. Park and R. M. Hochstrasser, “Multidimensional infrared spectroscopy of a peptide intramolecular hydrogen bond,” Chem. Phys. 323,78–86 (2006).
[Crossref]

M. T. Zanni and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11, (2001).
[Crossref]

Ishida, A.

Y. Makishima, N. Furukawa, A. Ishida, and J. Takeda, “Femtosecond real-time pump-probe imaging spectroscopy implemented on a single shot basis,” Jpn. J. Appl. Phys. 45,5986–5989 (2006).
[Crossref]

Jens, S.

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis ” Nature 434,625 (2005).
[Crossref] [PubMed]

Jonas, D. M.

D. M. Jonas, “Two-dimensional Femtosecond Spectroscopy,” Ann. Rev. Phys. Chem. 54,425–463 (2003).
[Crossref]

Knopp, G.

I. Pinkas, G. Knopp, and Y. Prior, “Preparation and monitoring of high-ground-state vibrational wavepackets by femtosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 115,236–244 (2001).
[Crossref]

Koroteev, N. I.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing,” J. Raman Spectrosc. 31,677–687 (2000).
[Crossref]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, and R. B. Miles, “One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma,” Opt. Lett. 24,478–480 (1999).
[Crossref]

Kosloff, R.

D. J. Tannor, R. Kosloff, and S. A. Rice, “Coherent pulse sequence induced control of selectivity of reactions - exact Quantum-Mechanical Calculations,” J. Chem. Phys. 85,5805–5820 (1986).
[Crossref]

Lee, P.David

K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo, and P.David Lee, “Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product,” J. Chem. Phys. 120,3323–3332 (2004).
[Crossref]

Lepine, F.

Long, M. B.

Makishima, Y.

Y. Makishima, N. Furukawa, A. Ishida, and J. Takeda, “Femtosecond real-time pump-probe imaging spectroscopy implemented on a single shot basis,” Jpn. J. Appl. Phys. 45,5986–5989 (2006).
[Crossref]

Malley, M. M.

M. M. Malley and P. M. Rentzepis, “Picosecond molecular relaxation displayed with crossed laser beams,” Chem. Phys. Lett. 3,534–536 (1969).
[Crossref]

Mancal, T.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121,4221–4236 (2004).
[Crossref] [PubMed]

Miles, R. B.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing,” J. Raman Spectrosc. 31,677–687 (2000).
[Crossref]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, and R. B. Miles, “One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma,” Opt. Lett. 24,478–480 (1999).
[Crossref]

Ming, K. Wai

K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo, and P.David Lee, “Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product,” J. Chem. Phys. 120,3323–3332 (2004).
[Crossref]

Mukamel, S.

C. Scheurer and S. Mukamel, “Design strategies for pulse sequences in multidimensional optical spectroscopies,” J. Chem. Phys. 115,4989–5004 (2001).
[Crossref]

V. Chernyak, W. M. Zhang, and S. Mukamel, “Multidimensional femtosecond spectroscopies of molecular aggregates and semiconductor nanostructures: The nonlinear exciton equations,” J. Chem. Phys. 109,9587–9601 (1998).
[Crossref]

Murphy, D. V.

Naumov, A. N.

A. N. Naumov and A. M. Zheltikov, “Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques,” Appl. Phys. B 77,369–376 (2003).
[Crossref]

A. N. Naumov and A. M. Zheltikov, “Frequency-time and time-space mappings for single-shot coherent four-wave mixing with chirped pulses and broad beams,” J. Raman Spectrosc. 32,960–970 (2001).
[Crossref]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing,” J. Raman Spectrosc. 31,677–687 (2000).
[Crossref]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, and R. B. Miles, “One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma,” Opt. Lett. 24,478–480 (1999).
[Crossref]

Nelson, K. A.

P. R. Poulin and K. A. Nelson, “Irreversible organic crystalline chemistry monitored in real time,” Science 313,1756–1760 (2006).
[Crossref] [PubMed]

J. T. Fourkas, L. Dhar, K. A. Nelson, and R. Trebino, “Spatially encoded, single-shot ultrafast spectroscopies,” J. Opt. Soc. Am. B 12,155–165 (1995).
[Crossref]

Park, J.

J. Park and R. M. Hochstrasser, “Multidimensional infrared spectroscopy of a peptide intramolecular hydrogen bond,” Chem. Phys. 323,78–86 (2006).
[Crossref]

Patzlaff, T.

G. Seifert, R. Zurl, T. Patzlaff, and H. Graener, “Time-resolved observation of intermolecular vibrational energy transfer in liquid bromoform,” J. Chem. Phys. 112,6349–6354 (2000).
[Crossref]

Pinkas, I.

I. Pinkas, G. Knopp, and Y. Prior, “Preparation and monitoring of high-ground-state vibrational wavepackets by femtosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 115,236–244 (2001).
[Crossref]

Poulin, P. R.

P. R. Poulin and K. A. Nelson, “Irreversible organic crystalline chemistry monitored in real time,” Science 313,1756–1760 (2006).
[Crossref] [PubMed]

Prior, Y.

I. Pinkas, G. Knopp, and Y. Prior, “Preparation and monitoring of high-ground-state vibrational wavepackets by femtosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 115,236–244 (2001).
[Crossref]

Y. Prior, “3-dimensional phase matching in 4-wave mixing,” Appl. Opt. 19,1741–1743 (1980).
[Crossref]

Rentzepis, P. M.

M. M. Malley and P. M. Rentzepis, “Picosecond molecular relaxation displayed with crossed laser beams,” Chem. Phys. Lett. 3,534–536 (1969).
[Crossref]

Rice, S. A.

D. J. Tannor, R. Kosloff, and S. A. Rice, “Coherent pulse sequence induced control of selectivity of reactions - exact Quantum-Mechanical Calculations,” J. Chem. Phys. 85,5805–5820 (1986).
[Crossref]

Scheurer, C.

C. Scheurer and S. Mukamel, “Design strategies for pulse sequences in multidimensional optical spectroscopies,” J. Chem. Phys. 115,4989–5004 (2001).
[Crossref]

Seifert, G.

G. Seifert, R. Zurl, T. Patzlaff, and H. Graener, “Time-resolved observation of intermolecular vibrational energy transfer in liquid bromoform,” J. Chem. Phys. 112,6349–6354 (2000).
[Crossref]

Sidorov-Biryukov, D. A.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing,” J. Raman Spectrosc. 31,677–687 (2000).
[Crossref]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, and R. B. Miles, “One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma,” Opt. Lett. 24,478–480 (1999).
[Crossref]

Stiopkin, I. V.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121,4221–4236 (2004).
[Crossref] [PubMed]

Takeda, J.

Y. Makishima, N. Furukawa, A. Ishida, and J. Takeda, “Femtosecond real-time pump-probe imaging spectroscopy implemented on a single shot basis,” Jpn. J. Appl. Phys. 45,5986–5989 (2006).
[Crossref]

Tannor, D. J.

D. J. Tannor, R. Kosloff, and S. A. Rice, “Coherent pulse sequence induced control of selectivity of reactions - exact Quantum-Mechanical Calculations,” J. Chem. Phys. 85,5805–5820 (1986).
[Crossref]

Tokmakoff, A.

Trebino, R.

Vaswani, H. M.

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis ” Nature 434,625 (2005).
[Crossref] [PubMed]

Vrakking, M. J. J.

Woutersen, S.

S. Woutersen and P. Hamm, “Time-resolved two-dimensional vibrational spectroscopy of a short alpha-helix in water,” J. Chem. Phys. 115,7737–7743 (2001).
[Crossref]

S. Woutersen and P. Hamm, “Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy,” J. Phys. Chem. B 104,11316–11320 (2000).
[Crossref]

Wright, J. C.

W. Zhao and J. C. Wright, “Doubly Vibrationally enhanced four wave mixing: The Optical Analog to 2D NMR,” Phys. Rev. Lett. 84,1411–1414 (2000).
[Crossref] [PubMed]

Xiangguo, G.

K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo, and P.David Lee, “Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product,” J. Chem. Phys. 120,3323–3332 (2004).
[Crossref]

Yun-Liang, L.

K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo, and P.David Lee, “Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product,” J. Chem. Phys. 120,3323–3332 (2004).
[Crossref]

Zamith, S.

Zanni, M. T.

M. T. Zanni and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11, (2001).
[Crossref]

Zhang, W. M.

V. Chernyak, W. M. Zhang, and S. Mukamel, “Multidimensional femtosecond spectroscopies of molecular aggregates and semiconductor nanostructures: The nonlinear exciton equations,” J. Chem. Phys. 109,9587–9601 (1998).
[Crossref]

Zhao, W.

W. Zhao and J. C. Wright, “Doubly Vibrationally enhanced four wave mixing: The Optical Analog to 2D NMR,” Phys. Rev. Lett. 84,1411–1414 (2000).
[Crossref] [PubMed]

Zheltikov, A. M.

A. N. Naumov and A. M. Zheltikov, “Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques,” Appl. Phys. B 77,369–376 (2003).
[Crossref]

A. N. Naumov and A. M. Zheltikov, “Frequency-time and time-space mappings for single-shot coherent four-wave mixing with chirped pulses and broad beams,” J. Raman Spectrosc. 32,960–970 (2001).
[Crossref]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing,” J. Raman Spectrosc. 31,677–687 (2000).
[Crossref]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, and R. B. Miles, “One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma,” Opt. Lett. 24,478–480 (1999).
[Crossref]

Zurl, R.

G. Seifert, R. Zurl, T. Patzlaff, and H. Graener, “Time-resolved observation of intermolecular vibrational energy transfer in liquid bromoform,” J. Chem. Phys. 112,6349–6354 (2000).
[Crossref]

Ann. Rev. Phys. Chem. (1)

D. M. Jonas, “Two-dimensional Femtosecond Spectroscopy,” Ann. Rev. Phys. Chem. 54,425–463 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

A. N. Naumov and A. M. Zheltikov, “Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques,” Appl. Phys. B 77,369–376 (2003).
[Crossref]

Chem. Phys. (1)

J. Park and R. M. Hochstrasser, “Multidimensional infrared spectroscopy of a peptide intramolecular hydrogen bond,” Chem. Phys. 323,78–86 (2006).
[Crossref]

Chem. Phys. Lett. (1)

M. M. Malley and P. M. Rentzepis, “Picosecond molecular relaxation displayed with crossed laser beams,” Chem. Phys. Lett. 3,534–536 (1969).
[Crossref]

Curr. Opin. Struct. Biol. (1)

M. T. Zanni and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11, (2001).
[Crossref]

J. Chem. Phys. (8)

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121,4221–4236 (2004).
[Crossref] [PubMed]

D. J. Tannor, R. Kosloff, and S. A. Rice, “Coherent pulse sequence induced control of selectivity of reactions - exact Quantum-Mechanical Calculations,” J. Chem. Phys. 85,5805–5820 (1986).
[Crossref]

I. Pinkas, G. Knopp, and Y. Prior, “Preparation and monitoring of high-ground-state vibrational wavepackets by femtosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys. 115,236–244 (2001).
[Crossref]

K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo, and P.David Lee, “Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product,” J. Chem. Phys. 120,3323–3332 (2004).
[Crossref]

V. Chernyak, W. M. Zhang, and S. Mukamel, “Multidimensional femtosecond spectroscopies of molecular aggregates and semiconductor nanostructures: The nonlinear exciton equations,” J. Chem. Phys. 109,9587–9601 (1998).
[Crossref]

C. Scheurer and S. Mukamel, “Design strategies for pulse sequences in multidimensional optical spectroscopies,” J. Chem. Phys. 115,4989–5004 (2001).
[Crossref]

S. Woutersen and P. Hamm, “Time-resolved two-dimensional vibrational spectroscopy of a short alpha-helix in water,” J. Chem. Phys. 115,7737–7743 (2001).
[Crossref]

G. Seifert, R. Zurl, T. Patzlaff, and H. Graener, “Time-resolved observation of intermolecular vibrational energy transfer in liquid bromoform,” J. Chem. Phys. 112,6349–6354 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

S. Woutersen and P. Hamm, “Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy,” J. Phys. Chem. B 104,11316–11320 (2000).
[Crossref]

J. Raman Spectrosc. (2)

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing,” J. Raman Spectrosc. 31,677–687 (2000).
[Crossref]

A. N. Naumov and A. M. Zheltikov, “Frequency-time and time-space mappings for single-shot coherent four-wave mixing with chirped pulses and broad beams,” J. Raman Spectrosc. 32,960–970 (2001).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Makishima, N. Furukawa, A. Ishida, and J. Takeda, “Femtosecond real-time pump-probe imaging spectroscopy implemented on a single shot basis,” Jpn. J. Appl. Phys. 45,5986–5989 (2006).
[Crossref]

Nature (1)

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis ” Nature 434,625 (2005).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

W. Zhao and J. C. Wright, “Doubly Vibrationally enhanced four wave mixing: The Optical Analog to 2D NMR,” Phys. Rev. Lett. 84,1411–1414 (2000).
[Crossref] [PubMed]

Science (1)

P. R. Poulin and K. A. Nelson, “Irreversible organic crystalline chemistry monitored in real time,” Science 313,1756–1760 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Configuration of the three incoming beams in single-shot CARS experiment. The signal beam is collected directly on a camera.

Fig. 2.
Fig. 2.

schematic y-z slice of the interaction region. The outer rectangle represents the intersection between the k1 and k3 beams. The large gray circle represents beam k2 . The inner black circle depicts region where all three pulses coincide and DFWM signal is produced. Dashed and dotted lines represent coincidence between pulses 2 and 3 and pulses 2 and 1 respectively. Gray ellipses represent time delayed vibrational signal. The four pulse sequence schemes depict order of arrival of the pulses in each quadrant of the interaction volume.

Fig. 3.
Fig. 3.

Single-Pulse CARS image of bromoform “as captured”. The line represents the calibrated τ2,3=0 line. The upper axis depicts the τ3,1 delay (pump-probe delay) (a). Power spectrum of the averaged time-domain signal. The time-domain signal is depicted in the inset (b).

Fig. 4.
Fig. 4.

Single-Shot CARS image of chloroform “as captured”. The line represents calibrated τ2,3=0 line. The upper axis depicts the τ3,1 delay (pump-probe delay) (a). Power spectrum of the averaged temporal signal of single-shot CARS image of chloroform molecules. Averaged temporal signal is provided in insertion (b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k 1 = cos θ sin θ 0 ; k 2 = cos θ 0 sin θ ; k 3 = cos θ sin θ 0 ; k s = k 1 k 2 + k 3 = cos θ 0 sin θ .
τ 3,1 ( r ) = 2 yc 1 sin θ + T 3 T 1 ,
τ 2,1 ( r ) = ( z y ) c 1 sin θ + T 2 T 1 ,
τ 2,3 ( r ) = ( z + y ) c 1 sin θ + T 2 T 3 .

Metrics