Abstract

We report the generation of 1.5-μm-band energy-time entangled photon pairs using a periodically poled lithium niobate (PPLN) waveguide. We performed a two-photon interference experiment and obtained coincidence fringes with 77.3% visibilities without subtracting accidental coincidences.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594 (1999).
    [CrossRef]
  2. I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden,M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
    [CrossRef] [PubMed]
  3. H. Takesue and K. Inoue "Generation of 1.5- μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers," Phys. Rev. A 72, 041804(R) (2005).
    [CrossRef]
  4. H. Takesue and K. Inoue, "1.5-m band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
    [CrossRef] [PubMed]
  5. H. Takesue, "Long-distance distribution of time-bin entanglement generated in a cooled fiber," Opt. Express 14, 3453 (2006).
    [CrossRef] [PubMed]
  6. J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205-2208 (1989).
    [CrossRef] [PubMed]
  7. T. Honjo, K. Inoue and H. Takahashi, "Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett.,  29, 2797 (2004).
    [CrossRef] [PubMed]

2006 (1)

2005 (2)

H. Takesue and K. Inoue, "1.5-m band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue "Generation of 1.5- μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers," Phys. Rev. A 72, 041804(R) (2005).
[CrossRef]

2004 (2)

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden,M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

T. Honjo, K. Inoue and H. Takahashi, "Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett.,  29, 2797 (2004).
[CrossRef] [PubMed]

1999 (1)

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

1989 (1)

J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205-2208 (1989).
[CrossRef] [PubMed]

Brendel, J.

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

de Riedmatten, H.

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden,M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Franson, J. D.

J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205-2208 (1989).
[CrossRef] [PubMed]

Gisin, N.

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden,M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

Honjo, T.

Inoue, K.

Legre, M.

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden,M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Marcikic, I.

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden,M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Takahashi, H.

Takesue, H.

Tittel, W.

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden,M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

Zbinden, H.

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden,M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

H. Takesue and K. Inoue "Generation of 1.5- μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers," Phys. Rev. A 72, 041804(R) (2005).
[CrossRef]

Phys. Rev. Lett. (3)

J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205-2208 (1989).
[CrossRef] [PubMed]

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594 (1999).
[CrossRef]

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden,M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental interference setup proposed by Franson.

Fig. 2.
Fig. 2.

Experimental setup

Fig. 3.
Fig. 3.

C value as a function of the average number of photon pairs per time slot.

Fig. 4.
Fig. 4.

Coincidence rate as a function of the temperature of the PLC Mach-Zehnder interferometer.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

c s = μ c α s + d s
c i = μ c α i + d i
C = R m R um = μ c α s α i c s c i + 1 .
V = R m R um R m + R um = μ c α s 2 α i 2 μ c α s 2 α i 2 + 2 ( μ c α s 2 + d s ) ( μ c α i 2 + d i ) .

Metrics