Abstract

We present a wavelength duplexer based on a compact arrayed waveguide grating (AWG) in silicon-on-insulator (SOI) photonic wire waveguides. Polarization insensitive operation is achieved through a special polarization diversity approach in which we use 2-D grating fiber couplers as integrated polarization splitters. To mitigate the effects of process variations, we propagated both polarizations in opposite directions through the same AWG with a mere 600×350μm 2 footprint. This resulted in an on-chip insertion loss between −2.1dB and −6.9dB, crosstalk of −15dB, and only 0.66dB polarization dependent loss. This is the first demonstration of a functional polarization-diversity circuit implemented in SOI nanophotonic waveguides, including interfaces to single-mode fiber.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, B. S., V. Wiaux, and R. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," J. Sel. Top. Quantum Electron. 12(6), 1394-1401 (2006).
    [CrossRef]
  2. C. Gunn, "Silicon photonics - Poised to invade local area networks," Photonics Spectra 40(3), 62-68 (2006).
  3. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator fabricated with CMOS technology," J. Lightwave Technol. 23(1), 401-412 (2005).
    [CrossRef]
  4. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV Lithography," IEEE Photon. Technol. Lett. 16(5), 1328-1330 (2004).
    [CrossRef]
  5. G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
    [CrossRef]
  6. C. Doerr, M. Zimgibl, C. Joyner, L. Stultz, and H. Presby, "Polarization diversity Waveguide Grating Receiver with Integrated Optical Amplifiers," IEEE Photon. Technol. Lett. 9, 85 (1997).
    [CrossRef]
  7. T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, "Polarizationtransparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
    [CrossRef]
  8. D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon Technol. Lett. 15(9), 1249-1251 (2003).
    [CrossRef]
  9. D. Taillaert and R. Baets, "Fiber-to-waveguide coupler," US Patent 7,065,272 B2 (2005).
  10. P. Urban, E. Pluk, E. Klein, A. Koonen, G. Khoe, and H. de Waardt, "Simulation Results of dynamically reconfigurable Broadband Photonic Access Networks (BB Photonics)," in 2nd IET International Conference on Access Technologies (ICAT), p. 93 (Cambridge, UK, 2006).
  11. R. Roy, G. Manhoudt, C. Roeloffzen, and W. van Etten, "Control and management scheme in a DWDM EPON," in Proceedings of the 8th International Conference on Transparent Optical Networks (ICTON), p. Tu.D1.6 (Nottingham,UK, 2006).
  12. D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett. 29(23), 2749-2751 (2004).
    [CrossRef] [PubMed]
  13. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in Silicon-on-insulator," Opt. Express 12(8), 1583-1591 (2004).
    [CrossRef] [PubMed]
  14. D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," J. Quantum Electron. 38(7), 949-955 (2002).
    [CrossRef]
  15. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11(1), 232-240 (2005).
    [CrossRef]
  16. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70 ラ 60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41(14), 801-802 (2005).
    [CrossRef]
  17. P. Dumon,W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, "Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array," Opt. Express 14(2), 664-669 (2006).
    [CrossRef] [PubMed]
  18. C. R. Doerr, "Planar Lightwave Devices for WDM," in Optical Fiber Telecommunications, I. P. Kaminow and T. Li, eds., Vol. IV A, Chap. 9, pp. 405 - 476 (Academic Press, ISBN 0-12-395172-0, 2002).
  19. D. Dai and S. He, "Accurate two-dimensional model of an arrayed-waveguide grating demultiplexer and optimal design based on the reciprocity theory," J. Opt. Soc. Am. A 21(12), 2392-2398 (2004).
    [CrossRef]
  20. Y. Barbarin, X. Leijtens, E. Bente, L. C.M., K. J.R., and M. Smit, "Extremely small AWG demultiplexer fabricated on InP by using a double-etch process," IEEE Photon. Technol. Lett. 16(11), 2478-2480 (2004).
    [CrossRef]
  21. Y. Hida, Y. Hibino, M. Itoh, A. Sugita, A. Himeno, and Y. Ohmori, "Fabrication of low-loss and polarisationinsensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5%Δ waveguides," Electron. Lett. 36(9), 820-821 (2000).
    [CrossRef]
  22. Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs," J. Lightwave Technol. 8(6), 1090-1101 (2002).

2007

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, "Polarizationtransparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

2006

G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, B. S., V. Wiaux, and R. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," J. Sel. Top. Quantum Electron. 12(6), 1394-1401 (2006).
[CrossRef]

C. Gunn, "Silicon photonics - Poised to invade local area networks," Photonics Spectra 40(3), 62-68 (2006).

P. Dumon,W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, "Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array," Opt. Express 14(2), 664-669 (2006).
[CrossRef] [PubMed]

2005

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11(1), 232-240 (2005).
[CrossRef]

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70 ラ 60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41(14), 801-802 (2005).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator fabricated with CMOS technology," J. Lightwave Technol. 23(1), 401-412 (2005).
[CrossRef]

2004

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV Lithography," IEEE Photon. Technol. Lett. 16(5), 1328-1330 (2004).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett. 29(23), 2749-2751 (2004).
[CrossRef] [PubMed]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in Silicon-on-insulator," Opt. Express 12(8), 1583-1591 (2004).
[CrossRef] [PubMed]

D. Dai and S. He, "Accurate two-dimensional model of an arrayed-waveguide grating demultiplexer and optimal design based on the reciprocity theory," J. Opt. Soc. Am. A 21(12), 2392-2398 (2004).
[CrossRef]

Y. Barbarin, X. Leijtens, E. Bente, L. C.M., K. J.R., and M. Smit, "Extremely small AWG demultiplexer fabricated on InP by using a double-etch process," IEEE Photon. Technol. Lett. 16(11), 2478-2480 (2004).
[CrossRef]

2003

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon Technol. Lett. 15(9), 1249-1251 (2003).
[CrossRef]

2002

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," J. Quantum Electron. 38(7), 949-955 (2002).
[CrossRef]

Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs," J. Lightwave Technol. 8(6), 1090-1101 (2002).

2000

Y. Hida, Y. Hibino, M. Itoh, A. Sugita, A. Himeno, and Y. Ohmori, "Fabrication of low-loss and polarisationinsensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5%Δ waveguides," Electron. Lett. 36(9), 820-821 (2000).
[CrossRef]

1997

C. Doerr, M. Zimgibl, C. Joyner, L. Stultz, and H. Presby, "Polarization diversity Waveguide Grating Receiver with Integrated Optical Amplifiers," IEEE Photon. Technol. Lett. 9, 85 (1997).
[CrossRef]

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70 ラ 60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41(14), 801-802 (2005).
[CrossRef]

Baets, R.

P. Dumon,W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, "Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array," Opt. Express 14(2), 664-669 (2006).
[CrossRef] [PubMed]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator fabricated with CMOS technology," J. Lightwave Technol. 23(1), 401-412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV Lithography," IEEE Photon. Technol. Lett. 16(5), 1328-1330 (2004).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett. 29(23), 2749-2751 (2004).
[CrossRef] [PubMed]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in Silicon-on-insulator," Opt. Express 12(8), 1583-1591 (2004).
[CrossRef] [PubMed]

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon Technol. Lett. 15(9), 1249-1251 (2003).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," J. Quantum Electron. 38(7), 949-955 (2002).
[CrossRef]

Barbarin, Y.

Y. Barbarin, X. Leijtens, E. Bente, L. C.M., K. J.R., and M. Smit, "Extremely small AWG demultiplexer fabricated on InP by using a double-etch process," IEEE Photon. Technol. Lett. 16(11), 2478-2480 (2004).
[CrossRef]

Barwicz, T.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, "Polarizationtransparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Beckx, S.

Bente, E.

Y. Barbarin, X. Leijtens, E. Bente, L. C.M., K. J.R., and M. Smit, "Extremely small AWG demultiplexer fabricated on InP by using a double-etch process," IEEE Photon. Technol. Lett. 16(11), 2478-2480 (2004).
[CrossRef]

Bienstman, P.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator fabricated with CMOS technology," J. Lightwave Technol. 23(1), 401-412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV Lithography," IEEE Photon. Technol. Lett. 16(5), 1328-1330 (2004).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett. 29(23), 2749-2751 (2004).
[CrossRef] [PubMed]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in Silicon-on-insulator," Opt. Express 12(8), 1583-1591 (2004).
[CrossRef] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," J. Quantum Electron. 38(7), 949-955 (2002).
[CrossRef]

Bogaerts, W.

P. Dumon,W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, "Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array," Opt. Express 14(2), 664-669 (2006).
[CrossRef] [PubMed]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, B. S., V. Wiaux, and R. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," J. Sel. Top. Quantum Electron. 12(6), 1394-1401 (2006).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator fabricated with CMOS technology," J. Lightwave Technol. 23(1), 401-412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV Lithography," IEEE Photon. Technol. Lett. 16(5), 1328-1330 (2004).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in Silicon-on-insulator," Opt. Express 12(8), 1583-1591 (2004).
[CrossRef] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," J. Quantum Electron. 38(7), 949-955 (2002).
[CrossRef]

Borel, P.

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon Technol. Lett. 15(9), 1249-1251 (2003).
[CrossRef]

Chan, S.

G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
[CrossRef]

Chong, H.

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon Technol. Lett. 15(9), 1249-1251 (2003).
[CrossRef]

Dai, D.

De La Rue, R.

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon Technol. Lett. 15(9), 1249-1251 (2003).
[CrossRef]

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," J. Quantum Electron. 38(7), 949-955 (2002).
[CrossRef]

Doerr, C.

C. Doerr, M. Zimgibl, C. Joyner, L. Stultz, and H. Presby, "Polarization diversity Waveguide Grating Receiver with Integrated Optical Amplifiers," IEEE Photon. Technol. Lett. 9, 85 (1997).
[CrossRef]

Dumon, P.

Emerson, N.

G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
[CrossRef]

Frandsen, L.

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon Technol. Lett. 15(9), 1249-1251 (2003).
[CrossRef]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11(1), 232-240 (2005).
[CrossRef]

Gardes, F.

G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
[CrossRef]

Gunn, C.

C. Gunn, "Silicon photonics - Poised to invade local area networks," Photonics Spectra 40(3), 62-68 (2006).

Hak, D.

G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
[CrossRef]

He, S.

Headley, W.

G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
[CrossRef]

Hibino, Y.

Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs," J. Lightwave Technol. 8(6), 1090-1101 (2002).

Y. Hida, Y. Hibino, M. Itoh, A. Sugita, A. Himeno, and Y. Ohmori, "Fabrication of low-loss and polarisationinsensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5%Δ waveguides," Electron. Lett. 36(9), 820-821 (2000).
[CrossRef]

Hida, Y.

Y. Hida, Y. Hibino, M. Itoh, A. Sugita, A. Himeno, and Y. Ohmori, "Fabrication of low-loss and polarisationinsensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5%Δ waveguides," Electron. Lett. 36(9), 820-821 (2000).
[CrossRef]

Himeno, A.

Y. Hida, Y. Hibino, M. Itoh, A. Sugita, A. Himeno, and Y. Ohmori, "Fabrication of low-loss and polarisationinsensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5%Δ waveguides," Electron. Lett. 36(9), 820-821 (2000).
[CrossRef]

Ippen, E.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, "Polarizationtransparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11(1), 232-240 (2005).
[CrossRef]

Itoh, M.

Y. Hida, Y. Hibino, M. Itoh, A. Sugita, A. Himeno, and Y. Ohmori, "Fabrication of low-loss and polarisationinsensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5%Δ waveguides," Electron. Lett. 36(9), 820-821 (2000).
[CrossRef]

Jaenen, P.

P. Dumon,W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, "Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array," Opt. Express 14(2), 664-669 (2006).
[CrossRef] [PubMed]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, B. S., V. Wiaux, and R. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," J. Sel. Top. Quantum Electron. 12(6), 1394-1401 (2006).
[CrossRef]

Joyner, C.

C. Doerr, M. Zimgibl, C. Joyner, L. Stultz, and H. Presby, "Polarization diversity Waveguide Grating Receiver with Integrated Optical Amplifiers," IEEE Photon. Technol. Lett. 9, 85 (1997).
[CrossRef]

Kartner, F.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, "Polarizationtransparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Krauss, T.

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," J. Quantum Electron. 38(7), 949-955 (2002).
[CrossRef]

Leijtens, X.

Y. Barbarin, X. Leijtens, E. Bente, L. C.M., K. J.R., and M. Smit, "Extremely small AWG demultiplexer fabricated on InP by using a double-etch process," IEEE Photon. Technol. Lett. 16(11), 2478-2480 (2004).
[CrossRef]

Liu, A.

G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
[CrossRef]

Luyssaert, B.

Mashanovich, G.

G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
[CrossRef]

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," J. Quantum Electron. 38(7), 949-955 (2002).
[CrossRef]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11(1), 232-240 (2005).
[CrossRef]

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70 ラ 60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41(14), 801-802 (2005).
[CrossRef]

Ohmori, Y.

Y. Hida, Y. Hibino, M. Itoh, A. Sugita, A. Himeno, and Y. Ohmori, "Fabrication of low-loss and polarisationinsensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5%Δ waveguides," Electron. Lett. 36(9), 820-821 (2000).
[CrossRef]

Ohno, F.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70 ラ 60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41(14), 801-802 (2005).
[CrossRef]

Paniccia, M.

G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
[CrossRef]

Passaro, V.

G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
[CrossRef]

Png, C.

G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
[CrossRef]

Popovic, M.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, "Polarizationtransparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Presby, H.

C. Doerr, M. Zimgibl, C. Joyner, L. Stultz, and H. Presby, "Polarization diversity Waveguide Grating Receiver with Integrated Optical Amplifiers," IEEE Photon. Technol. Lett. 9, 85 (1997).
[CrossRef]

Rakich, P.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, "Polarizationtransparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Reed, G.

G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
[CrossRef]

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70 ラ 60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41(14), 801-802 (2005).
[CrossRef]

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11(1), 232-240 (2005).
[CrossRef]

Smith, H.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, "Polarizationtransparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, "Polarizationtransparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Stultz, L.

C. Doerr, M. Zimgibl, C. Joyner, L. Stultz, and H. Presby, "Polarization diversity Waveguide Grating Receiver with Integrated Optical Amplifiers," IEEE Photon. Technol. Lett. 9, 85 (1997).
[CrossRef]

Sugita, A.

Y. Hida, Y. Hibino, M. Itoh, A. Sugita, A. Himeno, and Y. Ohmori, "Fabrication of low-loss and polarisationinsensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5%Δ waveguides," Electron. Lett. 36(9), 820-821 (2000).
[CrossRef]

Taillaert, D.

P. Dumon,W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, "Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array," Opt. Express 14(2), 664-669 (2006).
[CrossRef] [PubMed]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, B. S., V. Wiaux, and R. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," J. Sel. Top. Quantum Electron. 12(6), 1394-1401 (2006).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator fabricated with CMOS technology," J. Lightwave Technol. 23(1), 401-412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV Lithography," IEEE Photon. Technol. Lett. 16(5), 1328-1330 (2004).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett. 29(23), 2749-2751 (2004).
[CrossRef] [PubMed]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in Silicon-on-insulator," Opt. Express 12(8), 1583-1591 (2004).
[CrossRef] [PubMed]

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon Technol. Lett. 15(9), 1249-1251 (2003).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," J. Quantum Electron. 38(7), 949-955 (2002).
[CrossRef]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11(1), 232-240 (2005).
[CrossRef]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11(1), 232-240 (2005).
[CrossRef]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11(1), 232-240 (2005).
[CrossRef]

Timotijevic, B.

G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
[CrossRef]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11(1), 232-240 (2005).
[CrossRef]

Van Campenhout, J.

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," J. Quantum Electron. 38(7), 949-955 (2002).
[CrossRef]

Van Thourhout, D.

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," J. Quantum Electron. 38(7), 949-955 (2002).
[CrossRef]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11(1), 232-240 (2005).
[CrossRef]

Watts, M.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, "Polarizationtransparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Waugh, P.

G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
[CrossRef]

Wiaux, V.

Wouters, J.

P. Dumon,W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, "Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array," Opt. Express 14(2), 664-669 (2006).
[CrossRef] [PubMed]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, B. S., V. Wiaux, and R. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," J. Sel. Top. Quantum Electron. 12(6), 1394-1401 (2006).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV Lithography," IEEE Photon. Technol. Lett. 16(5), 1328-1330 (2004).
[CrossRef]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11(1), 232-240 (2005).
[CrossRef]

Zimgibl, M.

C. Doerr, M. Zimgibl, C. Joyner, L. Stultz, and H. Presby, "Polarization diversity Waveguide Grating Receiver with Integrated Optical Amplifiers," IEEE Photon. Technol. Lett. 9, 85 (1997).
[CrossRef]

Electron. Lett.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70 ラ 60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41(14), 801-802 (2005).
[CrossRef]

Y. Hida, Y. Hibino, M. Itoh, A. Sugita, A. Himeno, and Y. Ohmori, "Fabrication of low-loss and polarisationinsensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5%Δ waveguides," Electron. Lett. 36(9), 820-821 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11(1), 232-240 (2005).
[CrossRef]

IEEE Photon Technol. Lett.

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon Technol. Lett. 15(9), 1249-1251 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV Lithography," IEEE Photon. Technol. Lett. 16(5), 1328-1330 (2004).
[CrossRef]

C. Doerr, M. Zimgibl, C. Joyner, L. Stultz, and H. Presby, "Polarization diversity Waveguide Grating Receiver with Integrated Optical Amplifiers," IEEE Photon. Technol. Lett. 9, 85 (1997).
[CrossRef]

Y. Barbarin, X. Leijtens, E. Bente, L. C.M., K. J.R., and M. Smit, "Extremely small AWG demultiplexer fabricated on InP by using a double-etch process," IEEE Photon. Technol. Lett. 16(11), 2478-2480 (2004).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

J. Quantum Electron.

D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," J. Quantum Electron. 38(7), 949-955 (2002).
[CrossRef]

J. Sel. Top. Quantum Electron.

G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, B. S., V. Wiaux, and R. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," J. Sel. Top. Quantum Electron. 12(6), 1394-1401 (2006).
[CrossRef]

Nature Photonics

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, "Polarizationtransparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Photonics Spectra

C. Gunn, "Silicon photonics - Poised to invade local area networks," Photonics Spectra 40(3), 62-68 (2006).

Other

D. Taillaert and R. Baets, "Fiber-to-waveguide coupler," US Patent 7,065,272 B2 (2005).

P. Urban, E. Pluk, E. Klein, A. Koonen, G. Khoe, and H. de Waardt, "Simulation Results of dynamically reconfigurable Broadband Photonic Access Networks (BB Photonics)," in 2nd IET International Conference on Access Technologies (ICAT), p. 93 (Cambridge, UK, 2006).

R. Roy, G. Manhoudt, C. Roeloffzen, and W. van Etten, "Control and management scheme in a DWDM EPON," in Proceedings of the 8th International Conference on Transparent Optical Networks (ICTON), p. Tu.D1.6 (Nottingham,UK, 2006).

C. R. Doerr, "Planar Lightwave Devices for WDM," in Optical Fiber Telecommunications, I. P. Kaminow and T. Li, eds., Vol. IV A, Chap. 9, pp. 405 - 476 (Academic Press, ISBN 0-12-395172-0, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Principle of duplexer-based fiber access end-point. The downstream and upstream operate each on one 50GHz-spaced ITU channel within a 400GHz band. By using a reflective approach, the channel can be selected at the central office.

Fig. 2.
Fig. 2.

Principle of the 2-D fiber coupler with integrated polarization splitter. (a) 1-D grating coupler for TE-polarization. (b) 2-D grating coupler which decomposes the fiber polarizations into two linear polarizations which are coupled to the TE-modes of both waveguides.

Fig. 3.
Fig. 3.

Principle of a polarization independent duplexer using a polarization splitting grating coupler and bidirectional propagation through an AWG. Both fiber polarizations P 1 and P 2 travel through the same set of grating arms in opposite direction. At the output the polarizations can be recombined again with 2-D grating couplers.

Fig. 4.
Fig. 4.

Design of the AWG. (a) The transmission of the AWG output ports when located at their original channel spacings of 275GHz. (b) The output ports are shifted towards each other in pairs. (c) When the signals in the ports are added up, two broad wavelength bands form. Full line: signals combined electrically (power); dashed line: signals combined using a lossless symmetric Y-junction.

Fig. 5.
Fig. 5.

Interface with the free propagation region (FPR) of the AWG. (a) Near the interface, the access waveguides transition from deep etch to shallow etch to reduce reflections. (b) The fabricated structure shows the double etch scheme and the shifted ports.

Fig. 6.
Fig. 6.

SEM of fabricated duplexer. The outermost fiber couplers are directly connected and are used for as alignment and reference. The AWG has a 600×350μm 2 footprint. The two outputs for each wavelength band are not grouped but characterized individually.

Fig. 7.
Fig. 7.

2-D grating fiber couplers: (a) Transmission of a single coupler, extracted from the transmission of the reference waveguide. (b) an SEM picture of the fiber coupler and access waveguides.

Fig. 8.
Fig. 8.

Transmission of the duplexer output ports indicated in Fig. 6 normalized to the transmission of the grating couplers in Fig. 7. The original design simulation is also indicated, as well as the simulated transmission of the fabricated structure

Fig. 9.
Fig. 9.

Fluctuation in transmission over time when randomly varying the input polarization (starting at 20 seconds). The wavelength is kept constant at λ =λ1 indicated in Fig. 8.

Fig. 10.
Fig. 10.

Simple model of the coupling efficiency of a grating fiber coupler as a function of fiber position. (a) Transmission of a 1-D grating coupler due to fiber misalignment, normalized to the maximum transmission. (b) Normalized transmission of a 2-D grating coupler, after optimizing the polarization for each fiber position. (c) Polarization dependent loss (PDL) of a 2-D coupler for each fiber position.

Metrics