Abstract

We propose and demonstrate a new in-service fault-localization method for a wavelength division multiplexing passive optical network (WDM-PON). This scheme uses a tunable OTDR realized by a wavelength-locked Fabry-Perot laser diode. We successfully detect the faults both at the feeder fiber and the drop fibers. The resolution and the dynamic range are 100 m and 12 dB, respectively. In addition, the crosstalk induced by the OTDR signal to the transmission data is negligible.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ki-Man Choi, Jin-Serk Baik, and Chang-Hee Lee, "Color-free operation of dense WDM-PON based on the wavelength-locked Fabry-Perot Laser Diodes injecting a low-noise BLS," IEEE Photon. Technol. Lett. 8, 1167-1169 (2006).
    [CrossRef]
  2. Soo-Jin Park, Chang-Hee Lee, Ki-Tae Jeong, Hyung-Jin Park, Jeong-Gyun Ahn, and Kil-Ho Song, "Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network," J. Lightwave Technol. 22, 2582-2591(2004).
    [CrossRef]
  3. U. Hilbk, M. Burmeister, B. Hoen, Th. Hermes, and J. Saniter, "Selective OTDR measurements at the central office of individual fiber links in a PON," OFC’97 TuK3, 54 (1997).
  4. Hyun Deok Kim, Seung-Goo Kang, and Chang-Hee Lee, "A low-cost WDM source with an ASE injected Fabry-Perot semiconductor Laser," IEEE Photon. Technol. Lett. 12, 1067-1069 (1996).
  5. Koh-Ichi Aoyama,  et al., "Optical time domain reflectometry in a single mode fiber," J. Quantum Elect. QE- 17, 862-868 (1981).
    [CrossRef]
  6. C. Scheerer, "OTDR pulse power limit in on-line monitoring of optical fibres owing to stimulated Raman scattering," Electron. Lett. 32, 679-680 (1996).
    [CrossRef]
  7. Y. S. Jang, C.-H. Lee, and Y. C. Chung, "Effects of crosstalk in WDM systems using spectrum-sliced light sources," IEEE Photon. Technol. Lett. 11, 715-717 (1999).
    [CrossRef]
  8. http://www.santec.com/pdf/components/OTF-30M.pdf
  9. P. Healey and D. J. Malyon, "OTDR in single-mode fibre at 1.5-um using heterodyne detection," Electron. Lett. 18, 862-863 (1982).
    [CrossRef]

2006 (1)

Ki-Man Choi, Jin-Serk Baik, and Chang-Hee Lee, "Color-free operation of dense WDM-PON based on the wavelength-locked Fabry-Perot Laser Diodes injecting a low-noise BLS," IEEE Photon. Technol. Lett. 8, 1167-1169 (2006).
[CrossRef]

2004 (1)

1999 (1)

Y. S. Jang, C.-H. Lee, and Y. C. Chung, "Effects of crosstalk in WDM systems using spectrum-sliced light sources," IEEE Photon. Technol. Lett. 11, 715-717 (1999).
[CrossRef]

1996 (2)

Hyun Deok Kim, Seung-Goo Kang, and Chang-Hee Lee, "A low-cost WDM source with an ASE injected Fabry-Perot semiconductor Laser," IEEE Photon. Technol. Lett. 12, 1067-1069 (1996).

C. Scheerer, "OTDR pulse power limit in on-line monitoring of optical fibres owing to stimulated Raman scattering," Electron. Lett. 32, 679-680 (1996).
[CrossRef]

1982 (1)

P. Healey and D. J. Malyon, "OTDR in single-mode fibre at 1.5-um using heterodyne detection," Electron. Lett. 18, 862-863 (1982).
[CrossRef]

1981 (1)

Koh-Ichi Aoyama,  et al., "Optical time domain reflectometry in a single mode fiber," J. Quantum Elect. QE- 17, 862-868 (1981).
[CrossRef]

Aoyama, Koh-Ichi

Koh-Ichi Aoyama,  et al., "Optical time domain reflectometry in a single mode fiber," J. Quantum Elect. QE- 17, 862-868 (1981).
[CrossRef]

Chung, Y. C.

Y. S. Jang, C.-H. Lee, and Y. C. Chung, "Effects of crosstalk in WDM systems using spectrum-sliced light sources," IEEE Photon. Technol. Lett. 11, 715-717 (1999).
[CrossRef]

Healey, P.

P. Healey and D. J. Malyon, "OTDR in single-mode fibre at 1.5-um using heterodyne detection," Electron. Lett. 18, 862-863 (1982).
[CrossRef]

Jang, Y. S.

Y. S. Jang, C.-H. Lee, and Y. C. Chung, "Effects of crosstalk in WDM systems using spectrum-sliced light sources," IEEE Photon. Technol. Lett. 11, 715-717 (1999).
[CrossRef]

Lee, C.-H.

Y. S. Jang, C.-H. Lee, and Y. C. Chung, "Effects of crosstalk in WDM systems using spectrum-sliced light sources," IEEE Photon. Technol. Lett. 11, 715-717 (1999).
[CrossRef]

Malyon, D. J.

P. Healey and D. J. Malyon, "OTDR in single-mode fibre at 1.5-um using heterodyne detection," Electron. Lett. 18, 862-863 (1982).
[CrossRef]

Scheerer, C.

C. Scheerer, "OTDR pulse power limit in on-line monitoring of optical fibres owing to stimulated Raman scattering," Electron. Lett. 32, 679-680 (1996).
[CrossRef]

Electron. Lett. (2)

C. Scheerer, "OTDR pulse power limit in on-line monitoring of optical fibres owing to stimulated Raman scattering," Electron. Lett. 32, 679-680 (1996).
[CrossRef]

P. Healey and D. J. Malyon, "OTDR in single-mode fibre at 1.5-um using heterodyne detection," Electron. Lett. 18, 862-863 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Ki-Man Choi, Jin-Serk Baik, and Chang-Hee Lee, "Color-free operation of dense WDM-PON based on the wavelength-locked Fabry-Perot Laser Diodes injecting a low-noise BLS," IEEE Photon. Technol. Lett. 8, 1167-1169 (2006).
[CrossRef]

Y. S. Jang, C.-H. Lee, and Y. C. Chung, "Effects of crosstalk in WDM systems using spectrum-sliced light sources," IEEE Photon. Technol. Lett. 11, 715-717 (1999).
[CrossRef]

Hyun Deok Kim, Seung-Goo Kang, and Chang-Hee Lee, "A low-cost WDM source with an ASE injected Fabry-Perot semiconductor Laser," IEEE Photon. Technol. Lett. 12, 1067-1069 (1996).

J. Lightwave Technol. (1)

J. Quantum Elect. QE (1)

Koh-Ichi Aoyama,  et al., "Optical time domain reflectometry in a single mode fiber," J. Quantum Elect. QE- 17, 862-868 (1981).
[CrossRef]

Other (2)

http://www.santec.com/pdf/components/OTF-30M.pdf

U. Hilbk, M. Burmeister, B. Hoen, Th. Hermes, and J. Saniter, "Selective OTDR measurements at the central office of individual fiber links in a PON," OFC’97 TuK3, 54 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Wavelength spectra of 4-channels after the AWG at RN.

Fig. 3.
Fig. 3.

Fault detection results for (a) 3 km, (b) 3.4 km, (c) 4 km, and (d) 5.2 km from the remote node

Fig. 4.
Fig. 4.

(a). The measured BER as a function of crosstalk (b). Theoretical and measured power penalty (@ BER=10-10)

Fig.. 5.
Fig.. 5.

The measured RIN (a) wavelength-locked F-P LD with - 24 dBm / 0.2 nm, (b) spectrum-sliced F-P LD itself.

Fig. 6.
Fig. 6.

OTDR trace (a) wavelength-locked F-P LD (b) spectrum-sliced F-P LD

Metrics