Abstract

We describe a simple method of controlling the oscillating longitudinal mode of a diode-pumped-microchip green laser by changing injection currents to the laser diode. We observed the dependence of the oscillating longitudinal modes on the injection current and operation temperature in the microchip green laser, and demonstrated that the stable oscillating longitudinal-mode operation under the single mode, two and three modes can be achieved by only controlling injection currents from 850 to 1050 mA. The maximum output power of the microchip green laser as high as 105.5 mW was obtained under the single longitudinal-mode operation pumped by an 810 mW pumping power. The corresponding long-term power stability was better than 0.47 % for the measuring time interval of 12 hours.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baer, "Large-amplitude fluctuation due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers," J. Opt. Soc. Am. B 3, 1175-1180 (1986).
    [CrossRef]
  2. M. Oka, and S. Kubota, "Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers," Opt. Lett. 13, 805-807 (1988).
    [CrossRef] [PubMed]
  3. G. E. James, E. M. Harrell, C. Bracikowski, K. Wiesenfeld, and R. Roy, "Elimination of chaos in an intracavity-doubled Nd:YAG laser," Opt. Lett. 15, 1141-1143 (1990).
    [CrossRef] [PubMed]
  4. H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazumura, "Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate," IEEE J. Quantum Electron. 28, 1164-1168 (1992).
    [CrossRef]
  5. K. Suzuki, K. Shimomura, A. Eda, and K. Muro, "Low-noise diode-pumped intracavity-doubled laser with off-axially cut Nd:YVO4," Opt. Lett. 19, 1624-1626 (1994).
    [CrossRef] [PubMed]
  6. A. Harada, Y. Okazaki, and K. Kamiyama, "Characteristics of blue and green solid lasers using MgO-LiNbO3 periodic domain inverted bulk SHG crystal," The Review of Laser Engineering(in Japanese) 26, 861-867 (1998).
  7. Y. Li, S. M. Goldwasser, P. Herczfeld, and L. M. Narducci, "Dynamics of an electro-optically tunable microchip laser," IEEE J. Quantum Electron. 42, 208-217 (2006).
    [CrossRef]
  8. J. Dong, and K. Ueda, "Temperature-tuning Yb:YAG microchip lasers," Laser Phys. Lett. 2, 429-436 (2005).
    [CrossRef]
  9. X. Wan, S. Zhang, G. Liu, and L. Fei, "Influence of optical feedback on the longitudinal mode stability of microchip Nd:YAG lasers," Opt. Eng. 44, 104204-1-5 (2005).
    [CrossRef]
  10. T. Harimoto, and J. Watanabe, "Efficient and stable 532-nm microchip laser pumped by single-longitudinal-mode laser-diode," Elec. Lett. 41, 702-704 (2005).
    [CrossRef]

2006 (1)

Y. Li, S. M. Goldwasser, P. Herczfeld, and L. M. Narducci, "Dynamics of an electro-optically tunable microchip laser," IEEE J. Quantum Electron. 42, 208-217 (2006).
[CrossRef]

2005 (2)

J. Dong, and K. Ueda, "Temperature-tuning Yb:YAG microchip lasers," Laser Phys. Lett. 2, 429-436 (2005).
[CrossRef]

T. Harimoto, and J. Watanabe, "Efficient and stable 532-nm microchip laser pumped by single-longitudinal-mode laser-diode," Elec. Lett. 41, 702-704 (2005).
[CrossRef]

1998 (1)

A. Harada, Y. Okazaki, and K. Kamiyama, "Characteristics of blue and green solid lasers using MgO-LiNbO3 periodic domain inverted bulk SHG crystal," The Review of Laser Engineering(in Japanese) 26, 861-867 (1998).

1994 (1)

1992 (1)

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazumura, "Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate," IEEE J. Quantum Electron. 28, 1164-1168 (1992).
[CrossRef]

1990 (1)

1988 (1)

1986 (1)

Baer, T.

Bracikowski, C.

Dong, J.

J. Dong, and K. Ueda, "Temperature-tuning Yb:YAG microchip lasers," Laser Phys. Lett. 2, 429-436 (2005).
[CrossRef]

Eda, A.

Goldwasser, S. M.

Y. Li, S. M. Goldwasser, P. Herczfeld, and L. M. Narducci, "Dynamics of an electro-optically tunable microchip laser," IEEE J. Quantum Electron. 42, 208-217 (2006).
[CrossRef]

Harada, A.

A. Harada, Y. Okazaki, and K. Kamiyama, "Characteristics of blue and green solid lasers using MgO-LiNbO3 periodic domain inverted bulk SHG crystal," The Review of Laser Engineering(in Japanese) 26, 861-867 (1998).

Harimoto, T.

T. Harimoto, and J. Watanabe, "Efficient and stable 532-nm microchip laser pumped by single-longitudinal-mode laser-diode," Elec. Lett. 41, 702-704 (2005).
[CrossRef]

Harrell, E. M.

Herczfeld, P.

Y. Li, S. M. Goldwasser, P. Herczfeld, and L. M. Narducci, "Dynamics of an electro-optically tunable microchip laser," IEEE J. Quantum Electron. 42, 208-217 (2006).
[CrossRef]

James, G. E.

Kamiyama, K.

A. Harada, Y. Okazaki, and K. Kamiyama, "Characteristics of blue and green solid lasers using MgO-LiNbO3 periodic domain inverted bulk SHG crystal," The Review of Laser Engineering(in Japanese) 26, 861-867 (1998).

Kazumura, M.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazumura, "Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate," IEEE J. Quantum Electron. 28, 1164-1168 (1992).
[CrossRef]

Kubota, S.

Kume, M.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazumura, "Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate," IEEE J. Quantum Electron. 28, 1164-1168 (1992).
[CrossRef]

Li, Y.

Y. Li, S. M. Goldwasser, P. Herczfeld, and L. M. Narducci, "Dynamics of an electro-optically tunable microchip laser," IEEE J. Quantum Electron. 42, 208-217 (2006).
[CrossRef]

Muro, K.

Nagai, H.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazumura, "Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate," IEEE J. Quantum Electron. 28, 1164-1168 (1992).
[CrossRef]

Narducci, L. M.

Y. Li, S. M. Goldwasser, P. Herczfeld, and L. M. Narducci, "Dynamics of an electro-optically tunable microchip laser," IEEE J. Quantum Electron. 42, 208-217 (2006).
[CrossRef]

Ohta, I.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazumura, "Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate," IEEE J. Quantum Electron. 28, 1164-1168 (1992).
[CrossRef]

Oka, M.

Okazaki, Y.

A. Harada, Y. Okazaki, and K. Kamiyama, "Characteristics of blue and green solid lasers using MgO-LiNbO3 periodic domain inverted bulk SHG crystal," The Review of Laser Engineering(in Japanese) 26, 861-867 (1998).

Roy, R.

Shimizu, H.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazumura, "Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate," IEEE J. Quantum Electron. 28, 1164-1168 (1992).
[CrossRef]

Shimomura, K.

Suzuki, K.

Ueda, K.

J. Dong, and K. Ueda, "Temperature-tuning Yb:YAG microchip lasers," Laser Phys. Lett. 2, 429-436 (2005).
[CrossRef]

Watanabe, J.

T. Harimoto, and J. Watanabe, "Efficient and stable 532-nm microchip laser pumped by single-longitudinal-mode laser-diode," Elec. Lett. 41, 702-704 (2005).
[CrossRef]

Wiesenfeld, K.

Elec. Lett. (1)

T. Harimoto, and J. Watanabe, "Efficient and stable 532-nm microchip laser pumped by single-longitudinal-mode laser-diode," Elec. Lett. 41, 702-704 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

Y. Li, S. M. Goldwasser, P. Herczfeld, and L. M. Narducci, "Dynamics of an electro-optically tunable microchip laser," IEEE J. Quantum Electron. 42, 208-217 (2006).
[CrossRef]

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazumura, "Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate," IEEE J. Quantum Electron. 28, 1164-1168 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

J. Dong, and K. Ueda, "Temperature-tuning Yb:YAG microchip lasers," Laser Phys. Lett. 2, 429-436 (2005).
[CrossRef]

Opt. Lett. (3)

The Review of Laser Engineering (1)

A. Harada, Y. Okazaki, and K. Kamiyama, "Characteristics of blue and green solid lasers using MgO-LiNbO3 periodic domain inverted bulk SHG crystal," The Review of Laser Engineering(in Japanese) 26, 861-867 (1998).

Other (1)

X. Wan, S. Zhang, G. Liu, and L. Fei, "Influence of optical feedback on the longitudinal mode stability of microchip Nd:YAG lasers," Opt. Eng. 44, 104204-1-5 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Spectral distributions of the laser diode under different injection currents.

Fig. 2.
Fig. 2.

Configuration of the microchip green laser.

Fig. 3.
Fig. 3.

The distribution of the oscillating longitudinal mode for injection currents of 950-1050 mA and crystal temperatures of 15-30 °C.

Fig. 4.
Fig. 4.

The output power distribution of the microchip green laser for injection currents of 950-1050 mA and crystal temperatures of 15–30 °C.

Fig. 5.
Fig. 5.

The long-term stability of the microchip green laser for the measuring time interval of 12 hours.

Fig. 6.
Fig. 6.

Interference signals of the oscillating longitudinal modes of the microchip green laser measured with a scanning Fabry-Perot interferometer. (a) Single-longitudinal mode operation at 850 mA; (b) Two-longitudinal mode operation at 950mA; (c) Three longitudinal mode operation at 1020mA. (d) Unstable longitudinal mode operation at 1050mA.

Metrics