Abstract

Dual-polarization oscillations (DPO) on different transitions have been observed for the first time in a mirror-coated thin-slice Nd:GdVO4 laser possessing a large fluorescence anisotropy with laser-diode (LD) pumping. Oscillation spectra, input-output characteristics, pump-dependent pattern formations and noise power spectra are studied experimentally. Simultaneous oscillations of orthogonally-polarized different (higher-order) transverse modes and the resultant violation of inherent antiphase dynamics in multimode lasers have been demonstrated. The experimental results have been explained in terms of the reduced three-dimensional cross-saturation of population inversions among orthogonally-polarized modes peculiar to LD-pumped wide-aperture anisotropic lasers, in which a pumped area is larger than a lasing beam diameter.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. He and D. K. Killinger, “Dual-polarization modes and self-heterodyne noise in a single-frequency 2.1-μm microchip Ho,Tm:YAG laser,” Opt. Lett. 19,396–398 (1994).
    [PubMed]
  2. J. W. Czarske and H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114,223–229 (1995).
    [Crossref]
  3. X. J. Wang, S. L. Zhang, G. Liu, and L. G. Fei, “Self-Mixing Interference in Dual-Polarization Microchip Nd:YAG Lasers,” Chin. Phys. Lett. 21,2175–2178 (2004).
    [Crossref]
  4. K. F. Wall and A. Rosiewicz, “Dual-polarization microchip lasers for communications applications,” OFC ’96 Tech. Dig. paper TuJ1,50–51 (1996).
  5. M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 μm,” Opt. Lett. 30,2418–2420 (2005).
    [Crossref] [PubMed]
  6. M. Travagnin, M. P. van Exter, and J. P. Woerdman, “Influence of carrier dynamics on the polarization stability and noise-induced polarization hopping in surface-emitting semiconductor lasers,” Phys. Rev. A 56,1497–1507 (1997).
    [Crossref]
  7. M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Mégret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28,1543–1545 (2003).
    [Crossref] [PubMed]
  8. B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment,” Phys. Rev. A 68, 013813 (2003).
    [Crossref]
  9. B. S. Ryvkin, K. Panajotov, E. A. Avrutin, I. Veretennicoff, and H. Thienpont, “Optical-injection-induced polarization switching in polarization-bistable vertical-cavity surface-emitting lasers,” J. Appl. Phys. 96,6002–6007 (2004).
    [Crossref]
  10. E. Cabrera, S. Melle, O. G. Calderón, and J. M. Guerra, “Evolution of the Correlation between Orthogonal Polarization Patterns in Broad-Area Lasers,” Phys. Rev. Lett. 97, 233902 (2006).
    [Crossref] [PubMed]
  11. K. Otsuka, K. Kubodera, and J. Nakano, “Stabilized Dual-Polarization Oscillation in a LiNd0.5La0.5P4O12 Laser,” IEEE J. Quantum Electron. 13,398–400 (1997).
    [Crossref]
  12. K. Otsuka, “Oscillation Properties of Anisotropic Lasers,” IEEE J. Quantum Electron. 14,49–55 (1978).
    [Crossref]
  13. F. G. Anderson, P. L. Summers, H. Weidner, P. Hong, and E. E. Peal, “Interpretive crystal-field parameters: Application to Nd3+ in GdVO4 and YVO4,” Phys. Rev. B 50,14802–14808 (1994).
    [Crossref]
  14. C. L. Tang, H. Statz, and G. deMars, “Spectral Output and Spiking Behavior of Solid-State Lasers,” J. Appl. Phys. 34,2289–2295 (1963).
    [Crossref]
  15. K. Otsuka, R. Kawai, Y. Asakawa, P. Mandel, and E. A. Viktorov, “Simultaneous single-frequency oscillations on different transitions in a laser-diode-pumped LiNdP4O12 laser,” Opt. Lett. 23,201–203 (1998).
    [Crossref]
  16. Y. Sato, N. Pavel, and T. Taira, “Spectroscopic properties and near quantum-limit laser-oscillation in Nd:GdVO4 single crystal,” in OSA TOPS on Advanced Solid-State Photonics, vol.94, Gregory J. Quarles, Ed., (Optical Society of America, Washington, DC),405–409 (2004).
  17. H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329 (1966).
    [Crossref]
  18. T. Kimura and K. Otsuka, “Thermal Effects of a Continuously Pumped Nd3+:YAG Laser,” IEEE J. Quantum Electron. 7,403–407 (1971).
    [Crossref]
  19. Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, “Laser-Diode-Pumped Microchip LiNdP4O12 Lasers under Different Pump-Beam Focusing Conditions,” Jpn. J. Appl. Phys. 38,L515–L517 (1999).
    [Crossref]
  20. P. Mandel, K. Otsuka, J. Wang, and D. Pieroux, “Two-Mode Laser Power Spectra,” Phys. Rev. Lett. 76,2694–2697 (1996).
    [Crossref] [PubMed]
  21. P. Mandel, B. A. Nguyen, and K. Otsuka, “Universal dynamical properties of three-mode Fabry-Perot lasers,” Quantum Semiclassic. Opt. 9,365–380 (1997).
    [Crossref]
  22. K. Otsuka, “Transverse Effects on Antiphase Laser Dynamics,” Jpn. J. Appl. Phys. 32,L1414–L1417 (1993).
    [Crossref]

2006 (1)

E. Cabrera, S. Melle, O. G. Calderón, and J. M. Guerra, “Evolution of the Correlation between Orthogonal Polarization Patterns in Broad-Area Lasers,” Phys. Rev. Lett. 97, 233902 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

X. J. Wang, S. L. Zhang, G. Liu, and L. G. Fei, “Self-Mixing Interference in Dual-Polarization Microchip Nd:YAG Lasers,” Chin. Phys. Lett. 21,2175–2178 (2004).
[Crossref]

B. S. Ryvkin, K. Panajotov, E. A. Avrutin, I. Veretennicoff, and H. Thienpont, “Optical-injection-induced polarization switching in polarization-bistable vertical-cavity surface-emitting lasers,” J. Appl. Phys. 96,6002–6007 (2004).
[Crossref]

2003 (2)

M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Mégret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28,1543–1545 (2003).
[Crossref] [PubMed]

B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment,” Phys. Rev. A 68, 013813 (2003).
[Crossref]

1999 (1)

Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, “Laser-Diode-Pumped Microchip LiNdP4O12 Lasers under Different Pump-Beam Focusing Conditions,” Jpn. J. Appl. Phys. 38,L515–L517 (1999).
[Crossref]

1998 (1)

1997 (3)

K. Otsuka, K. Kubodera, and J. Nakano, “Stabilized Dual-Polarization Oscillation in a LiNd0.5La0.5P4O12 Laser,” IEEE J. Quantum Electron. 13,398–400 (1997).
[Crossref]

M. Travagnin, M. P. van Exter, and J. P. Woerdman, “Influence of carrier dynamics on the polarization stability and noise-induced polarization hopping in surface-emitting semiconductor lasers,” Phys. Rev. A 56,1497–1507 (1997).
[Crossref]

P. Mandel, B. A. Nguyen, and K. Otsuka, “Universal dynamical properties of three-mode Fabry-Perot lasers,” Quantum Semiclassic. Opt. 9,365–380 (1997).
[Crossref]

1996 (2)

P. Mandel, K. Otsuka, J. Wang, and D. Pieroux, “Two-Mode Laser Power Spectra,” Phys. Rev. Lett. 76,2694–2697 (1996).
[Crossref] [PubMed]

K. F. Wall and A. Rosiewicz, “Dual-polarization microchip lasers for communications applications,” OFC ’96 Tech. Dig. paper TuJ1,50–51 (1996).

1995 (1)

J. W. Czarske and H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114,223–229 (1995).
[Crossref]

1994 (2)

C. He and D. K. Killinger, “Dual-polarization modes and self-heterodyne noise in a single-frequency 2.1-μm microchip Ho,Tm:YAG laser,” Opt. Lett. 19,396–398 (1994).
[PubMed]

F. G. Anderson, P. L. Summers, H. Weidner, P. Hong, and E. E. Peal, “Interpretive crystal-field parameters: Application to Nd3+ in GdVO4 and YVO4,” Phys. Rev. B 50,14802–14808 (1994).
[Crossref]

1993 (1)

K. Otsuka, “Transverse Effects on Antiphase Laser Dynamics,” Jpn. J. Appl. Phys. 32,L1414–L1417 (1993).
[Crossref]

1978 (1)

K. Otsuka, “Oscillation Properties of Anisotropic Lasers,” IEEE J. Quantum Electron. 14,49–55 (1978).
[Crossref]

1971 (1)

T. Kimura and K. Otsuka, “Thermal Effects of a Continuously Pumped Nd3+:YAG Laser,” IEEE J. Quantum Electron. 7,403–407 (1971).
[Crossref]

1966 (1)

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329 (1966).
[Crossref]

1963 (1)

C. L. Tang, H. Statz, and G. deMars, “Spectral Output and Spiking Behavior of Solid-State Lasers,” J. Appl. Phys. 34,2289–2295 (1963).
[Crossref]

Albert, J.

B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment,” Phys. Rev. A 68, 013813 (2003).
[Crossref]

Amon, A.

Anderson, F. G.

F. G. Anderson, P. L. Summers, H. Weidner, P. Hong, and E. E. Peal, “Interpretive crystal-field parameters: Application to Nd3+ in GdVO4 and YVO4,” Phys. Rev. B 50,14802–14808 (1994).
[Crossref]

Asakawa, Y.

Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, “Laser-Diode-Pumped Microchip LiNdP4O12 Lasers under Different Pump-Beam Focusing Conditions,” Jpn. J. Appl. Phys. 38,L515–L517 (1999).
[Crossref]

K. Otsuka, R. Kawai, Y. Asakawa, P. Mandel, and E. A. Viktorov, “Simultaneous single-frequency oscillations on different transitions in a laser-diode-pumped LiNdP4O12 laser,” Opt. Lett. 23,201–203 (1998).
[Crossref]

Avrutin, E. A.

B. S. Ryvkin, K. Panajotov, E. A. Avrutin, I. Veretennicoff, and H. Thienpont, “Optical-injection-induced polarization switching in polarization-bistable vertical-cavity surface-emitting lasers,” J. Appl. Phys. 96,6002–6007 (2004).
[Crossref]

Barbay, S.

B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment,” Phys. Rev. A 68, 013813 (2003).
[Crossref]

Blondel, M.

Brunel, M.

Cabrera, E.

E. Cabrera, S. Melle, O. G. Calderón, and J. M. Guerra, “Evolution of the Correlation between Orthogonal Polarization Patterns in Broad-Area Lasers,” Phys. Rev. Lett. 97, 233902 (2006).
[Crossref] [PubMed]

Calderón, O. G.

E. Cabrera, S. Melle, O. G. Calderón, and J. M. Guerra, “Evolution of the Correlation between Orthogonal Polarization Patterns in Broad-Area Lasers,” Phys. Rev. Lett. 97, 233902 (2006).
[Crossref] [PubMed]

Czarske, J. W.

J. W. Czarske and H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114,223–229 (1995).
[Crossref]

Danckaert, J.

B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment,” Phys. Rev. A 68, 013813 (2003).
[Crossref]

deMars, G.

C. L. Tang, H. Statz, and G. deMars, “Spectral Output and Spiking Behavior of Solid-State Lasers,” J. Appl. Phys. 34,2289–2295 (1963).
[Crossref]

Fei, L. G.

X. J. Wang, S. L. Zhang, G. Liu, and L. G. Fei, “Self-Mixing Interference in Dual-Polarization Microchip Nd:YAG Lasers,” Chin. Phys. Lett. 21,2175–2178 (2004).
[Crossref]

Giacomelli, G.

B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment,” Phys. Rev. A 68, 013813 (2003).
[Crossref]

Guerra, J. M.

E. Cabrera, S. Melle, O. G. Calderón, and J. M. Guerra, “Evolution of the Correlation between Orthogonal Polarization Patterns in Broad-Area Lasers,” Phys. Rev. Lett. 97, 233902 (2006).
[Crossref] [PubMed]

He, C.

Hong, P.

F. G. Anderson, P. L. Summers, H. Weidner, P. Hong, and E. E. Peal, “Interpretive crystal-field parameters: Application to Nd3+ in GdVO4 and YVO4,” Phys. Rev. B 50,14802–14808 (1994).
[Crossref]

Kawai, R.

Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, “Laser-Diode-Pumped Microchip LiNdP4O12 Lasers under Different Pump-Beam Focusing Conditions,” Jpn. J. Appl. Phys. 38,L515–L517 (1999).
[Crossref]

K. Otsuka, R. Kawai, Y. Asakawa, P. Mandel, and E. A. Viktorov, “Simultaneous single-frequency oscillations on different transitions in a laser-diode-pumped LiNdP4O12 laser,” Opt. Lett. 23,201–203 (1998).
[Crossref]

Killinger, D. K.

Kimura, T.

T. Kimura and K. Otsuka, “Thermal Effects of a Continuously Pumped Nd3+:YAG Laser,” IEEE J. Quantum Electron. 7,403–407 (1971).
[Crossref]

Kogelnik, H.

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329 (1966).
[Crossref]

Kubodera, K.

K. Otsuka, K. Kubodera, and J. Nakano, “Stabilized Dual-Polarization Oscillation in a LiNd0.5La0.5P4O12 Laser,” IEEE J. Quantum Electron. 13,398–400 (1997).
[Crossref]

Li, T.

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329 (1966).
[Crossref]

Liu, G.

X. J. Wang, S. L. Zhang, G. Liu, and L. G. Fei, “Self-Mixing Interference in Dual-Polarization Microchip Nd:YAG Lasers,” Chin. Phys. Lett. 21,2175–2178 (2004).
[Crossref]

Mandel, P.

K. Otsuka, R. Kawai, Y. Asakawa, P. Mandel, and E. A. Viktorov, “Simultaneous single-frequency oscillations on different transitions in a laser-diode-pumped LiNdP4O12 laser,” Opt. Lett. 23,201–203 (1998).
[Crossref]

P. Mandel, B. A. Nguyen, and K. Otsuka, “Universal dynamical properties of three-mode Fabry-Perot lasers,” Quantum Semiclassic. Opt. 9,365–380 (1997).
[Crossref]

P. Mandel, K. Otsuka, J. Wang, and D. Pieroux, “Two-Mode Laser Power Spectra,” Phys. Rev. Lett. 76,2694–2697 (1996).
[Crossref] [PubMed]

Marin, F.

B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment,” Phys. Rev. A 68, 013813 (2003).
[Crossref]

Mégret, P.

Melle, S.

E. Cabrera, S. Melle, O. G. Calderón, and J. M. Guerra, “Evolution of the Correlation between Orthogonal Polarization Patterns in Broad-Area Lasers,” Phys. Rev. Lett. 97, 233902 (2006).
[Crossref] [PubMed]

Mueller, H.

J. W. Czarske and H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114,223–229 (1995).
[Crossref]

Nagler, B.

B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment,” Phys. Rev. A 68, 013813 (2003).
[Crossref]

Nakano, J.

K. Otsuka, K. Kubodera, and J. Nakano, “Stabilized Dual-Polarization Oscillation in a LiNd0.5La0.5P4O12 Laser,” IEEE J. Quantum Electron. 13,398–400 (1997).
[Crossref]

Nguyen, B. A.

P. Mandel, B. A. Nguyen, and K. Otsuka, “Universal dynamical properties of three-mode Fabry-Perot lasers,” Quantum Semiclassic. Opt. 9,365–380 (1997).
[Crossref]

Ohki, K.

Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, “Laser-Diode-Pumped Microchip LiNdP4O12 Lasers under Different Pump-Beam Focusing Conditions,” Jpn. J. Appl. Phys. 38,L515–L517 (1999).
[Crossref]

Otsuka, K.

Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, “Laser-Diode-Pumped Microchip LiNdP4O12 Lasers under Different Pump-Beam Focusing Conditions,” Jpn. J. Appl. Phys. 38,L515–L517 (1999).
[Crossref]

K. Otsuka, R. Kawai, Y. Asakawa, P. Mandel, and E. A. Viktorov, “Simultaneous single-frequency oscillations on different transitions in a laser-diode-pumped LiNdP4O12 laser,” Opt. Lett. 23,201–203 (1998).
[Crossref]

P. Mandel, B. A. Nguyen, and K. Otsuka, “Universal dynamical properties of three-mode Fabry-Perot lasers,” Quantum Semiclassic. Opt. 9,365–380 (1997).
[Crossref]

K. Otsuka, K. Kubodera, and J. Nakano, “Stabilized Dual-Polarization Oscillation in a LiNd0.5La0.5P4O12 Laser,” IEEE J. Quantum Electron. 13,398–400 (1997).
[Crossref]

P. Mandel, K. Otsuka, J. Wang, and D. Pieroux, “Two-Mode Laser Power Spectra,” Phys. Rev. Lett. 76,2694–2697 (1996).
[Crossref] [PubMed]

K. Otsuka, “Transverse Effects on Antiphase Laser Dynamics,” Jpn. J. Appl. Phys. 32,L1414–L1417 (1993).
[Crossref]

K. Otsuka, “Oscillation Properties of Anisotropic Lasers,” IEEE J. Quantum Electron. 14,49–55 (1978).
[Crossref]

T. Kimura and K. Otsuka, “Thermal Effects of a Continuously Pumped Nd3+:YAG Laser,” IEEE J. Quantum Electron. 7,403–407 (1971).
[Crossref]

Panajotov, K.

B. S. Ryvkin, K. Panajotov, E. A. Avrutin, I. Veretennicoff, and H. Thienpont, “Optical-injection-induced polarization switching in polarization-bistable vertical-cavity surface-emitting lasers,” J. Appl. Phys. 96,6002–6007 (2004).
[Crossref]

B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment,” Phys. Rev. A 68, 013813 (2003).
[Crossref]

M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Mégret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28,1543–1545 (2003).
[Crossref] [PubMed]

Pavel, N.

Y. Sato, N. Pavel, and T. Taira, “Spectroscopic properties and near quantum-limit laser-oscillation in Nd:GdVO4 single crystal,” in OSA TOPS on Advanced Solid-State Photonics, vol.94, Gregory J. Quarles, Ed., (Optical Society of America, Washington, DC),405–409 (2004).

Peal, E. E.

F. G. Anderson, P. L. Summers, H. Weidner, P. Hong, and E. E. Peal, “Interpretive crystal-field parameters: Application to Nd3+ in GdVO4 and YVO4,” Phys. Rev. B 50,14802–14808 (1994).
[Crossref]

Peeters, M.

B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment,” Phys. Rev. A 68, 013813 (2003).
[Crossref]

Pieroux, D.

P. Mandel, K. Otsuka, J. Wang, and D. Pieroux, “Two-Mode Laser Power Spectra,” Phys. Rev. Lett. 76,2694–2697 (1996).
[Crossref] [PubMed]

Rosiewicz, A.

K. F. Wall and A. Rosiewicz, “Dual-polarization microchip lasers for communications applications,” OFC ’96 Tech. Dig. paper TuJ1,50–51 (1996).

Ryvkin, B. S.

B. S. Ryvkin, K. Panajotov, E. A. Avrutin, I. Veretennicoff, and H. Thienpont, “Optical-injection-induced polarization switching in polarization-bistable vertical-cavity surface-emitting lasers,” J. Appl. Phys. 96,6002–6007 (2004).
[Crossref]

Sato, Y.

Y. Sato, N. Pavel, and T. Taira, “Spectroscopic properties and near quantum-limit laser-oscillation in Nd:GdVO4 single crystal,” in OSA TOPS on Advanced Solid-State Photonics, vol.94, Gregory J. Quarles, Ed., (Optical Society of America, Washington, DC),405–409 (2004).

Sciamanna, M.

Statz, H.

C. L. Tang, H. Statz, and G. deMars, “Spectral Output and Spiking Behavior of Solid-State Lasers,” J. Appl. Phys. 34,2289–2295 (1963).
[Crossref]

Summers, P. L.

F. G. Anderson, P. L. Summers, H. Weidner, P. Hong, and E. E. Peal, “Interpretive crystal-field parameters: Application to Nd3+ in GdVO4 and YVO4,” Phys. Rev. B 50,14802–14808 (1994).
[Crossref]

Taira, T.

Y. Sato, N. Pavel, and T. Taira, “Spectroscopic properties and near quantum-limit laser-oscillation in Nd:GdVO4 single crystal,” in OSA TOPS on Advanced Solid-State Photonics, vol.94, Gregory J. Quarles, Ed., (Optical Society of America, Washington, DC),405–409 (2004).

Tang, C. L.

C. L. Tang, H. Statz, and G. deMars, “Spectral Output and Spiking Behavior of Solid-State Lasers,” J. Appl. Phys. 34,2289–2295 (1963).
[Crossref]

Thienpont, H.

B. S. Ryvkin, K. Panajotov, E. A. Avrutin, I. Veretennicoff, and H. Thienpont, “Optical-injection-induced polarization switching in polarization-bistable vertical-cavity surface-emitting lasers,” J. Appl. Phys. 96,6002–6007 (2004).
[Crossref]

B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment,” Phys. Rev. A 68, 013813 (2003).
[Crossref]

M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Mégret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28,1543–1545 (2003).
[Crossref] [PubMed]

Travagnin, M.

M. Travagnin, M. P. van Exter, and J. P. Woerdman, “Influence of carrier dynamics on the polarization stability and noise-induced polarization hopping in surface-emitting semiconductor lasers,” Phys. Rev. A 56,1497–1507 (1997).
[Crossref]

Vallet, M.

van Exter, M. P.

M. Travagnin, M. P. van Exter, and J. P. Woerdman, “Influence of carrier dynamics on the polarization stability and noise-induced polarization hopping in surface-emitting semiconductor lasers,” Phys. Rev. A 56,1497–1507 (1997).
[Crossref]

Veretennicoff, I.

B. S. Ryvkin, K. Panajotov, E. A. Avrutin, I. Veretennicoff, and H. Thienpont, “Optical-injection-induced polarization switching in polarization-bistable vertical-cavity surface-emitting lasers,” J. Appl. Phys. 96,6002–6007 (2004).
[Crossref]

B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment,” Phys. Rev. A 68, 013813 (2003).
[Crossref]

M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Mégret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28,1543–1545 (2003).
[Crossref] [PubMed]

Verschaffelt, G.

B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment,” Phys. Rev. A 68, 013813 (2003).
[Crossref]

Viktorov, E. A.

Wall, K. F.

K. F. Wall and A. Rosiewicz, “Dual-polarization microchip lasers for communications applications,” OFC ’96 Tech. Dig. paper TuJ1,50–51 (1996).

Wang, J.

P. Mandel, K. Otsuka, J. Wang, and D. Pieroux, “Two-Mode Laser Power Spectra,” Phys. Rev. Lett. 76,2694–2697 (1996).
[Crossref] [PubMed]

Wang, X. J.

X. J. Wang, S. L. Zhang, G. Liu, and L. G. Fei, “Self-Mixing Interference in Dual-Polarization Microchip Nd:YAG Lasers,” Chin. Phys. Lett. 21,2175–2178 (2004).
[Crossref]

Weidner, H.

F. G. Anderson, P. L. Summers, H. Weidner, P. Hong, and E. E. Peal, “Interpretive crystal-field parameters: Application to Nd3+ in GdVO4 and YVO4,” Phys. Rev. B 50,14802–14808 (1994).
[Crossref]

Woerdman, J. P.

M. Travagnin, M. P. van Exter, and J. P. Woerdman, “Influence of carrier dynamics on the polarization stability and noise-induced polarization hopping in surface-emitting semiconductor lasers,” Phys. Rev. A 56,1497–1507 (1997).
[Crossref]

Zhang, S. L.

X. J. Wang, S. L. Zhang, G. Liu, and L. G. Fei, “Self-Mixing Interference in Dual-Polarization Microchip Nd:YAG Lasers,” Chin. Phys. Lett. 21,2175–2178 (2004).
[Crossref]

Chin. Phys. Lett. (1)

X. J. Wang, S. L. Zhang, G. Liu, and L. G. Fei, “Self-Mixing Interference in Dual-Polarization Microchip Nd:YAG Lasers,” Chin. Phys. Lett. 21,2175–2178 (2004).
[Crossref]

IEEE J. Quantum Electron. (3)

K. Otsuka, K. Kubodera, and J. Nakano, “Stabilized Dual-Polarization Oscillation in a LiNd0.5La0.5P4O12 Laser,” IEEE J. Quantum Electron. 13,398–400 (1997).
[Crossref]

K. Otsuka, “Oscillation Properties of Anisotropic Lasers,” IEEE J. Quantum Electron. 14,49–55 (1978).
[Crossref]

T. Kimura and K. Otsuka, “Thermal Effects of a Continuously Pumped Nd3+:YAG Laser,” IEEE J. Quantum Electron. 7,403–407 (1971).
[Crossref]

J. Appl. Phys. (2)

B. S. Ryvkin, K. Panajotov, E. A. Avrutin, I. Veretennicoff, and H. Thienpont, “Optical-injection-induced polarization switching in polarization-bistable vertical-cavity surface-emitting lasers,” J. Appl. Phys. 96,6002–6007 (2004).
[Crossref]

C. L. Tang, H. Statz, and G. deMars, “Spectral Output and Spiking Behavior of Solid-State Lasers,” J. Appl. Phys. 34,2289–2295 (1963).
[Crossref]

Jpn. J. Appl. Phys. (2)

Y. Asakawa, R. Kawai, K. Ohki, and K. Otsuka, “Laser-Diode-Pumped Microchip LiNdP4O12 Lasers under Different Pump-Beam Focusing Conditions,” Jpn. J. Appl. Phys. 38,L515–L517 (1999).
[Crossref]

K. Otsuka, “Transverse Effects on Antiphase Laser Dynamics,” Jpn. J. Appl. Phys. 32,L1414–L1417 (1993).
[Crossref]

OFC ’96 Tech. Dig. paper TuJ1, (1)

K. F. Wall and A. Rosiewicz, “Dual-polarization microchip lasers for communications applications,” OFC ’96 Tech. Dig. paper TuJ1,50–51 (1996).

Opt. Commun. (1)

J. W. Czarske and H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114,223–229 (1995).
[Crossref]

Opt. Lett. (4)

Phys. Rev. A (2)

M. Travagnin, M. P. van Exter, and J. P. Woerdman, “Influence of carrier dynamics on the polarization stability and noise-induced polarization hopping in surface-emitting semiconductor lasers,” Phys. Rev. A 56,1497–1507 (1997).
[Crossref]

B. Nagler, M. Peeters, J. Albert, G. Verschaffelt, K. Panajotov, H. Thienpont, I. Veretennicoff, J. Danckaert, S. Barbay, G. Giacomelli, and F. Marin, “Polarization-mode hopping in single-mode vertical-cavity surface-emitting lasers: Theory and experiment,” Phys. Rev. A 68, 013813 (2003).
[Crossref]

Phys. Rev. B (1)

F. G. Anderson, P. L. Summers, H. Weidner, P. Hong, and E. E. Peal, “Interpretive crystal-field parameters: Application to Nd3+ in GdVO4 and YVO4,” Phys. Rev. B 50,14802–14808 (1994).
[Crossref]

Phys. Rev. Lett. (2)

E. Cabrera, S. Melle, O. G. Calderón, and J. M. Guerra, “Evolution of the Correlation between Orthogonal Polarization Patterns in Broad-Area Lasers,” Phys. Rev. Lett. 97, 233902 (2006).
[Crossref] [PubMed]

P. Mandel, K. Otsuka, J. Wang, and D. Pieroux, “Two-Mode Laser Power Spectra,” Phys. Rev. Lett. 76,2694–2697 (1996).
[Crossref] [PubMed]

Proc. IEEE (1)

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329 (1966).
[Crossref]

Quantum Semiclassic. Opt. (1)

P. Mandel, B. A. Nguyen, and K. Otsuka, “Universal dynamical properties of three-mode Fabry-Perot lasers,” Quantum Semiclassic. Opt. 9,365–380 (1997).
[Crossref]

Other (1)

Y. Sato, N. Pavel, and T. Taira, “Spectroscopic properties and near quantum-limit laser-oscillation in Nd:GdVO4 single crystal,” in OSA TOPS on Advanced Solid-State Photonics, vol.94, Gregory J. Quarles, Ed., (Optical Society of America, Washington, DC),405–409 (2004).

Supplementary Material (3)

» Media 1: MOV (1109 KB)     
» Media 2: MOV (1704 KB)     
» Media 3: MOV (437 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup of a LD-pumped wide aperture thin-slice Nd:GdVO4 laser. LD: laser diode, AP: anamorphic prism pair, OL: objective lens, BS: beam splitter, PD: pho-todiode receiver, WM: multiwavelength meter, CCD: charge-coupled device, DO: digital oscilloscope, SA: rf spectrum analyzer.

Fig. 2.
Fig. 2.

(a). Global oscillation spectra at several pump levels. The lasing threshold is 62 mW. (b) Stark energy levels (in cm-1) of 4 I 11/2 and 4 F 3/2 for Nd+3 in GdVO4 crystals. l 1 represents the transition for modes 1 and 1’, while l 2 and l 2 correspond to the transitions for modes 2 and 3 in (a).

Fig. 3.
Fig. 3.

Input-output characteristics of a LD-pumped wide aperture thin-slice Nd:GdVO4 laser.

Fig. 4.
Fig. 4.

The LD-pumped wide-aperture thin-slice Nd:GdVO4 laser operating in the three-transition oscillation regime: (a) the global oscillation spectra with the angle of the polarizer parallel (θ = 0°) and perpendicular (θ = 90°) to the c-axis of the crystal; (b) the relative intensities of lasing modes as a function of the angle θ of the polarizer to the c-axis of the crystal.

Fig. 5.
Fig. 5.

Far-field lasing pattern changes of π- and δ-polarization modes with increasing pump power. The associated movie file, indicating the pump-dependent far-field lasing patterns, has a size of 1.08 Mbytes for the p-polarization mode and 1.66 Mbytes for the s-polarization mode, respectively. [Media 1] [Media 2]

Fig. 6.
Fig. 6.

Calculated lasing beam spot sizes w 1 and w 2 at input and output mirrors as a function of effective focal length. The dashed line indicates the pumping spot size for a microscopic objective lens with 10× magnification. Changes of pump and lasing beams within the laser cavity are depicted in the inset. Left: end view, right: side view.

Fig. 7.
Fig. 7.

The Nd:GdVO4 laser operating on a two-transition regime at pump power 195 mW: (a) the global oscillation spectrum; (b) The power spectra of the total, π- and δ-polarization lasing beams; and (c) transverse mode pattern of π- and δ-polarization beams.

Fig. 8.
Fig. 8.

The Nd:GdVO4 laser was pumped to a three-transition regime by pump power 106 mW: (a) the global oscillation spectrum; (b) The power spectra of the total, π- and δ-polarization lasing beams; and (c) transverse mode pattern of π- and δ-polarization beams. Movie (436 Kbytes) demonstrates the different sizes and positions of the transverse patterns, when the angle of the polarizer changes from 0° to 180°. [Media 3]

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

w i 2 = λ n 0 L π g i g 1 g 2 1 g 1 g 2
1 f L e A 2 K C [ dn dT + α E ( n 0 1 ) ]
β ij = crystal I i x y z I j x y z exp ( α P ' z ) dxdydz crystal I i x y z I j x y z exp ( α P ' z ) dxdydz
I 1 x y z = exp [ 2 ( x 2 + y 2 ) w 2 ( z ) ] sin 2 ( k 1 z )
I x y z = exp [ 2 ( x 2 + y 2 ) w 2 ( z ) ] sin 2 ( k z )
I 3 x y z = 8 x 2 w 2 ( z ) exp [ 2 ( x 2 + y 2 ) w 2 ( z ) ] sin 2 ( k 3 z )

Metrics