Abstract

Mid-infrared supercontinuum (SC) extending to ≃4.0 μm is generated with 1.3 W time-averaged power, the highest power to our knowledge, in ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF…) fluoride fiber by using cladding-pumped fiber amplifiers and modulated laser diode pulses. We demonstrate the scalability of the SC average power by varying the pump pulse repetition rate while maintaining the similar peak power. Simulation results obtained by solving the generalized nonlinear Schrödinger equation show that the long wavelength edge of the SC is primarily determined by the peak pump power in the ZBLAN fiber.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd edition, (Academic, San Diego, 2001).
  2. I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources, (Springer-Verlag, Berlin Heidelberg, 2003).
    [CrossRef]
  3. S. Moon and D. Y. Kim, "Generation of octave-spanning supercontinuum with 1550-nm amplified diode-laser pulses and a dispersion-shifted fiber," Opt. Express 14, 270-278 (2006).
    [CrossRef] [PubMed]
  4. A. K. Abeeluck, C. Headley, and C. G. Jørgensen, "High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004).
    [CrossRef] [PubMed]
  5. C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
    [CrossRef]
  6. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé, "Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping," Opt. Lett. 31, 2553-2555 (2006).
    [CrossRef] [PubMed]
  7. C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, V. V. Alexander, M. N. Islam, A. Galvanauskas, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé, "0.8-4.5 microns supercontinuum generation in ZBLAN fluoride fibers scaled up to 1.25 W power," presented at Conference on Lasers and Electro-Optics CLEO 2006, Long Beach, Calif., May 21-26, 2006, postdeadline paper, CPDA10.
  8. T. Hohage and F. Schmidt, "On the numerical solution of nonlinear Schrödinger equations in fiber optics," ZIB-report 02-04, (2002), ftp://ftp.zib.de/pub/zib-publications/reports/ZR-02-04.pdf.
  9. A. Saissy, J. Botineau, L. Macon, and G. Maze, "Raman scattering in a fluorozirconate glass optical fiber," J. De Physique Lettres 46, 289-294 (1985).
  10. J. M. Parker, "Fluoride glasses," Annu. Rev. Mater. Sci. 19, 21-41 (1989).
    [CrossRef]
  11. Y. Dureste, "Raman amplification in fluoride glass fibres," Electron. Lett. 21, 723-724 (1985).
    [CrossRef]

2006

2004

1989

J. M. Parker, "Fluoride glasses," Annu. Rev. Mater. Sci. 19, 21-41 (1989).
[CrossRef]

1985

Y. Dureste, "Raman amplification in fluoride glass fibres," Electron. Lett. 21, 723-724 (1985).
[CrossRef]

A. Saissy, J. Botineau, L. Macon, and G. Maze, "Raman scattering in a fluorozirconate glass optical fiber," J. De Physique Lettres 46, 289-294 (1985).

Abeeluck, A. K.

Botineau, J.

A. Saissy, J. Botineau, L. Macon, and G. Maze, "Raman scattering in a fluorozirconate glass optical fiber," J. De Physique Lettres 46, 289-294 (1985).

Dureste, Y.

Y. Dureste, "Raman amplification in fluoride glass fibres," Electron. Lett. 21, 723-724 (1985).
[CrossRef]

Freeman, M. J.

Hagen, C. L.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

Headley, C.

Islam, M. N.

Jørgensen, C. G.

Kim, D. Y.

Kulkarni, O. P.

Kumar, M.

Macon, L.

A. Saissy, J. Botineau, L. Macon, and G. Maze, "Raman scattering in a fluorozirconate glass optical fiber," J. De Physique Lettres 46, 289-294 (1985).

Maze, G.

A. Saissy, J. Botineau, L. Macon, and G. Maze, "Raman scattering in a fluorozirconate glass optical fiber," J. De Physique Lettres 46, 289-294 (1985).

Mazé, G.

Moon, S.

Parker, J. M.

J. M. Parker, "Fluoride glasses," Annu. Rev. Mater. Sci. 19, 21-41 (1989).
[CrossRef]

Poulain, M.

Saissy, A.

A. Saissy, J. Botineau, L. Macon, and G. Maze, "Raman scattering in a fluorozirconate glass optical fiber," J. De Physique Lettres 46, 289-294 (1985).

Sanders, S. T.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

Terry, F. L.

Walewski, J. W.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

Xia, C.

Annu. Rev. Mater. Sci.

J. M. Parker, "Fluoride glasses," Annu. Rev. Mater. Sci. 19, 21-41 (1989).
[CrossRef]

Electron. Lett.

Y. Dureste, "Raman amplification in fluoride glass fibres," Electron. Lett. 21, 723-724 (1985).
[CrossRef]

IEEE Photon. Technol. Lett.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

J. De Physique Lettres

A. Saissy, J. Botineau, L. Macon, and G. Maze, "Raman scattering in a fluorozirconate glass optical fiber," J. De Physique Lettres 46, 289-294 (1985).

Opt. Express

Opt. Lett.

Other

C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, V. V. Alexander, M. N. Islam, A. Galvanauskas, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé, "0.8-4.5 microns supercontinuum generation in ZBLAN fluoride fibers scaled up to 1.25 W power," presented at Conference on Lasers and Electro-Optics CLEO 2006, Long Beach, Calif., May 21-26, 2006, postdeadline paper, CPDA10.

T. Hohage and F. Schmidt, "On the numerical solution of nonlinear Schrödinger equations in fiber optics," ZIB-report 02-04, (2002), ftp://ftp.zib.de/pub/zib-publications/reports/ZR-02-04.pdf.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd edition, (Academic, San Diego, 2001).

I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources, (Springer-Verlag, Berlin Heidelberg, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup comprising three-stage fiber amplifier followed by laser diode

Fig. 2.
Fig. 2.

SC spectrum from a) 3m SMF fiber followed by 13m FL#1 in high power setup, and b) 1m SMF fiber followed by 8m FL#1 in low power setup

Fig. 3.
Fig. 3.

SC spectrum from 3m SMF fiber followed by 10m FL#2

Fig. 4.
Fig. 4.

SC spectrum from a) 80 m FL#2 pumped by 2 kW peak power at 5 kHz rep. rate, b) 60 m FL#2 pumped by 1.5 kW peak power at 500 kHz rep. rate

Fig. 5.
Fig. 5.

(a). SC spectrum after 1.25m SMF followed by 8m FL#1 at 4kW peak power in the low average power setup, (b). SC spectrum after 3m SMF followed by 11m FL#2 at 3kW peak power in the high average power setup, (c). SC spectrum after 3m SMF followed by 11m FL#2 as a function of peak pump power in the high average power setup

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A z = ( D ̂ + N ̂ ) A
D ̂ = i 2 β 2 2 A τ 2 + 1 6 β 3 3 A τ 3 + i 24 β 4 4 A τ 4 α 2
N ̂ = ( 1 + i ω 0 t ) -∞ +∞ [ ( 1 f R ) δ ( t ) + f R h R ( t ) ] A z t t 2 dt'

Metrics