Abstract

Recently, OSNR monitoring based on the measurement of degree of polarization (DOP) has attracted much attention, thanks to its simplicity and high efficiency. However, the OSNR monitoring sensitivity is quite poor in the high OSNR region, resulting in high estimation error and narrow dynamic range. In this paper, we propose and experimentally demonstrate a narrow-band off-center optical filtering technique for DOP-based OSNR monitors. In 40-Gb/s RZ-OOK systems, OSNR monitoring sensitivity and DOP dynamic range are successfully enhanced to 3.14%/dB and 31.4%, respectively, in the high OSNR region (25∼35dB/0.1nm).

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, "Optical performance monitoring," J. Lightwave Technol. 22, 294-304 (2004).
    [CrossRef]
  2. E. Wong, K. L. Lee, and A. Nirmalathas, "Novel in-band optical signal-to-noise ratio monitor for WDM networks," in Proceedings of Opto-Electronics and Communications Conference (OECC), paper 6B3-5 (2005).
  3. .C. Xie, D. C. Kilper, L. Möller, and R. Ryf, "Orthogonal Polarization Heterodyne OSNR monitoring technique insensitive to polarization effects," in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, Washington DC, 2006), paper PDP10.
  4. W. Chen, R. S. Tucker, X. Yi, W. Shieh, and J. S. Evans, "Optical Signal-to-Noise Ratio monitoring using uncorrelated beat noise," IEEE Photon. Technol. Lett. 17, 2484-2486 (2005).
    [CrossRef]
  5. M. Petersson, H. Sunnerud, M. Karlsson, and B.-E Olsson, "Performance monitoring in optical networks using stokes parameters," IEEE Photon. Technol. Lett. 16, 686-688, (2004).
    [CrossRef]
  6. S. M. R. Motaghian Nezam, L. Yan, J. E. McGeehan, Y Shi, A. E. Willner, and S. Yao, "Enhancing the dynamic range and DGD monitoring windows in DOP-based DGD monitors using symmetric and asymmetric partial optical filtering," J. Lightwave Technol. 22, 1094-1102 (2004).
    [CrossRef]

2005 (1)

W. Chen, R. S. Tucker, X. Yi, W. Shieh, and J. S. Evans, "Optical Signal-to-Noise Ratio monitoring using uncorrelated beat noise," IEEE Photon. Technol. Lett. 17, 2484-2486 (2005).
[CrossRef]

2004 (3)

Bach, R.

Blumenthal, D. J.

Chen, W.

W. Chen, R. S. Tucker, X. Yi, W. Shieh, and J. S. Evans, "Optical Signal-to-Noise Ratio monitoring using uncorrelated beat noise," IEEE Photon. Technol. Lett. 17, 2484-2486 (2005).
[CrossRef]

Einstein, D.

Evans, J. S.

W. Chen, R. S. Tucker, X. Yi, W. Shieh, and J. S. Evans, "Optical Signal-to-Noise Ratio monitoring using uncorrelated beat noise," IEEE Photon. Technol. Lett. 17, 2484-2486 (2005).
[CrossRef]

Karlsson, M.

M. Petersson, H. Sunnerud, M. Karlsson, and B.-E Olsson, "Performance monitoring in optical networks using stokes parameters," IEEE Photon. Technol. Lett. 16, 686-688, (2004).
[CrossRef]

Kilper, D. C.

Landolsi, T.

McGeehan, J. E.

Motaghian Nezam, S. M. R.

Olsson, B.-E

M. Petersson, H. Sunnerud, M. Karlsson, and B.-E Olsson, "Performance monitoring in optical networks using stokes parameters," IEEE Photon. Technol. Lett. 16, 686-688, (2004).
[CrossRef]

Ostar, L.

Petersson, M.

M. Petersson, H. Sunnerud, M. Karlsson, and B.-E Olsson, "Performance monitoring in optical networks using stokes parameters," IEEE Photon. Technol. Lett. 16, 686-688, (2004).
[CrossRef]

Preiss, M.

Shi, Y

Shieh, W.

W. Chen, R. S. Tucker, X. Yi, W. Shieh, and J. S. Evans, "Optical Signal-to-Noise Ratio monitoring using uncorrelated beat noise," IEEE Photon. Technol. Lett. 17, 2484-2486 (2005).
[CrossRef]

Sunnerud, H.

M. Petersson, H. Sunnerud, M. Karlsson, and B.-E Olsson, "Performance monitoring in optical networks using stokes parameters," IEEE Photon. Technol. Lett. 16, 686-688, (2004).
[CrossRef]

Tucker, R. S.

W. Chen, R. S. Tucker, X. Yi, W. Shieh, and J. S. Evans, "Optical Signal-to-Noise Ratio monitoring using uncorrelated beat noise," IEEE Photon. Technol. Lett. 17, 2484-2486 (2005).
[CrossRef]

Willner, A. E.

Yan, L.

Yao, S.

Yi, X.

W. Chen, R. S. Tucker, X. Yi, W. Shieh, and J. S. Evans, "Optical Signal-to-Noise Ratio monitoring using uncorrelated beat noise," IEEE Photon. Technol. Lett. 17, 2484-2486 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

W. Chen, R. S. Tucker, X. Yi, W. Shieh, and J. S. Evans, "Optical Signal-to-Noise Ratio monitoring using uncorrelated beat noise," IEEE Photon. Technol. Lett. 17, 2484-2486 (2005).
[CrossRef]

M. Petersson, H. Sunnerud, M. Karlsson, and B.-E Olsson, "Performance monitoring in optical networks using stokes parameters," IEEE Photon. Technol. Lett. 16, 686-688, (2004).
[CrossRef]

J. Lightwave Technol. (2)

Other (2)

E. Wong, K. L. Lee, and A. Nirmalathas, "Novel in-band optical signal-to-noise ratio monitor for WDM networks," in Proceedings of Opto-Electronics and Communications Conference (OECC), paper 6B3-5 (2005).

.C. Xie, D. C. Kilper, L. Möller, and R. Ryf, "Orthogonal Polarization Heterodyne OSNR monitoring technique insensitive to polarization effects," in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, Washington DC, 2006), paper PDP10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Illustration of optical filtering scheme for DOP-based OSNR monitoring, (i) symmetric optical filtering with bandwidth of (a) 2, (b) 1 and (c) 0.22 nm; (ii) 0.22-nm-wide off-center optical filtering with offset of (d) 0.2 and (e) 1 nm from the center frequency.

Fig. 2.
Fig. 2.

Experimental setup, FMLL: fiber mode-locked laser, OBPF: optical band-pass filter, OSA: optical spectrum analyzer, EAM: electroabsorption modulator.

Fig. 3.
Fig. 3.

Measured DOP response curves against OSNR in a 10-Gb/s RZ-OOK system using different optical filtering schemes by simulation (line) and experiment (symbol), BW=bandwidth, OS=offset.

Fig. 4.
Fig. 4.

Measured DOP response curves against OSNR in a 40-Gb/s RZ system using different optical filtering schemes by simulation (line) and experiment (symbol), BW=bandwidth, OS=offset.

Tables (1)

Tables Icon

Table 1. OSNR monitoring sensitivities in the high OSNR region (25∼35 dB/0.1nm) using different optical filtering approaches.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

OSNR ( dB / 0.1 nm ) = 10 log [ ( DOP 1 DOP ) ( NEB f 0.1 ) ]

Metrics