Abstract

We present experimental results on post-tuning the dispersion of a two-dimensional photonic crystal waveguide made from Ge33As12Se55 chalcogenide glass by exploiting the material photosensitivity to near-bandgap light. The change in the refractive index and volume of the material in response to exposure to 633nm light resulted in a shift of more than 5nm in the resonant coupling wavelength between a tapered optical fiber and the modes of a W1 waveguide. This represents a first proof of principle demonstration of the photosensitive post-tuning of a planar photonic crystal device.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J-M. Lourtioz, H. Benisty, V. Berger, J-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, 2005).
  2. H. M. H. Chong, and R. Delarue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Phot. Tech. Lett. 16, 1528-1530 (2004).
    [CrossRef]
  3. R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation," Opt. Lett. 31, 1238-1240 (2006).
    [CrossRef] [PubMed]
  4. D. Erickson, T. Rockwood, T. Emery, A. Sherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
    [CrossRef] [PubMed]
  5. D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, "Postfabrication fine-tuning of photonic crystal microcavities in InAs/InP quantum dot membranes," Appl. Phys. Lett. 87, 151107 (2005).
    [CrossRef]
  6. W. Park and J-B. Lee, "Mechanically tunable photonic crystal structure," Appl. Phys. Lett. 85, 4845-4847 (2004).
    [CrossRef]
  7. I. Marki, M. Salt, and H. P. Herzig, "Tuning the resonance of a photonic crystal microcavity with an AFM probe," Opt. Express 14, 2969-2978 (2006).
    [CrossRef] [PubMed]
  8. J. M. Gerard and B. Gayral, "Toward high-efficiency quantum-dot single photon sources," in Quantum Dots, Nanoparticles, and Nanoclusters, D. L. Huffaker and P. Bhattacharya, eds, Proc. SPIE 5361, 88-95 (2004).
    [CrossRef]
  9. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]
  10. A. Zakery and S. R. Elliot, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
    [CrossRef]
  11. C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, and B. Eggleton, "Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires," Opt. Express 14, 1070-1078 (2006).
    [CrossRef] [PubMed]
  12. S. Ramachandran and S. Bishop, "Photoinduced integrated-optics in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260-270 (2005).
    [CrossRef]
  13. R. Decorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, " High index contrast waveguides in Chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
    [CrossRef]
  14. V. Lyubin, M. Klebanov, A. Feigel, and B. Sfez, "Films of chalcogenide glassy semiconductors: New phenomena and new applications," Thin Solid Films 459, 183-186 (2004).
    [CrossRef]
  15. M. Shokooh-Saremi, V. Taeed, I. Littler, D. Moss, B. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodised Bragg gratings in Chalcogenide rib waveguides," Electron. Lett. 41, 13-14 (2005).
    [CrossRef]
  16. T. Sudoh, Y. Nakano, and K. Tada, "Wavelength trimming technology for multiple-wavelength distributed feedback laser array by photo-induced refractive index change," Electron. Lett. 33, 216-217 (1997).
    [CrossRef]
  17. S. Song, S. Howard, Z. Liu, A. Dirisu, C. Gmachl, and C. Arnold, "Mode tuning of quantum cascade lasers through optical processing of Chalcogenide glass claddings," Appl. Phys. Lett. 89, 041115 (2006).
    [CrossRef]
  18. A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low-loss waveguides in ultrafast laser-deposited As_2S_3 chalcogenide films, " J. Opt. Soc. Am. B 20, 1844-1852 (2003).
    [CrossRef]
  19. T. T. Nang, M. Okuda and T. Matsushita, "Photo-induced absorption change in some Se-based glass alloy systems," Phys. Rev. B 19,947-955 (1979).
    [CrossRef]
  20. K. Tanaka, "Reversible photostructural change: Mechanisms, properties and applications," J. Non-Cryst. Solids 35-36, 1023-1034 (1980)
    [CrossRef]
  21. S. R. Elliott, "A unified model for reversible photostructural effects in chalcogenide glasses," J. Non-Cryst. Solids 81, 71-98 (1986)
    [CrossRef]
  22. Y. Ruan, M. Kim, Y. Lee, B. Luther-Davies, and A. Rode, "Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography," submitted toApplied Physics Letters.
  23. D. Freeman, S. Madden, and B. Luther-Davies,"Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam," Opt. Express 13, 3079-3086 (2005).
    [CrossRef] [PubMed]
  24. C. Grillet, D. Freeman, B. Luther-Davies, S. Madden, R. McPhedran, D. J. Moss, M. J. Steel, and B. J. Eggleton, "Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes," Opt. Express 14, 369-376 (2006).
    [CrossRef] [PubMed]
  25. Y. K. Lizé, E. C. Mägi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004).
    [CrossRef] [PubMed]
  26. S. Madden, "Investigation into the photosensitivity of AMTIR-1 films," Laser Physics Centre, Australian National University (personal communication, 2006).
  27. A. Zakery and M. Hatami, "Nonlinear optical properties of pulsed-laser-deposited GeAsSe films and simulation of a nonlinear directional coupler switch, " J. Opt. Soc. Am. B 22, 591-597 (2005)
    [CrossRef]
  28. T. Igo, Y. Noguchi and H. Nagai, "Photoexpansion and ‘thermal contraction’ of amorphous chalcogenide glasses," Appl. Phys. Lett. 25, 193-194 (1974)
    [CrossRef]
  29. B. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
    [CrossRef]
  30. S. Tomljenovic-Hanic, M. Steel, C. de Sterke, and D. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett.Accepted in press.
    [PubMed]

2006 (6)

2005 (8)

D. Freeman, S. Madden, and B. Luther-Davies,"Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam," Opt. Express 13, 3079-3086 (2005).
[CrossRef] [PubMed]

A. Zakery and M. Hatami, "Nonlinear optical properties of pulsed-laser-deposited GeAsSe films and simulation of a nonlinear directional coupler switch, " J. Opt. Soc. Am. B 22, 591-597 (2005)
[CrossRef]

B. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

M. Shokooh-Saremi, V. Taeed, I. Littler, D. Moss, B. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodised Bragg gratings in Chalcogenide rib waveguides," Electron. Lett. 41, 13-14 (2005).
[CrossRef]

S. Ramachandran and S. Bishop, "Photoinduced integrated-optics in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260-270 (2005).
[CrossRef]

R. Decorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, " High index contrast waveguides in Chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, "Postfabrication fine-tuning of photonic crystal microcavities in InAs/InP quantum dot membranes," Appl. Phys. Lett. 87, 151107 (2005).
[CrossRef]

2004 (4)

W. Park and J-B. Lee, "Mechanically tunable photonic crystal structure," Appl. Phys. Lett. 85, 4845-4847 (2004).
[CrossRef]

V. Lyubin, M. Klebanov, A. Feigel, and B. Sfez, "Films of chalcogenide glassy semiconductors: New phenomena and new applications," Thin Solid Films 459, 183-186 (2004).
[CrossRef]

H. M. H. Chong, and R. Delarue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Phot. Tech. Lett. 16, 1528-1530 (2004).
[CrossRef]

Y. K. Lizé, E. C. Mägi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004).
[CrossRef] [PubMed]

2003 (2)

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low-loss waveguides in ultrafast laser-deposited As_2S_3 chalcogenide films, " J. Opt. Soc. Am. B 20, 1844-1852 (2003).
[CrossRef]

A. Zakery and S. R. Elliot, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

1997 (1)

T. Sudoh, Y. Nakano, and K. Tada, "Wavelength trimming technology for multiple-wavelength distributed feedback laser array by photo-induced refractive index change," Electron. Lett. 33, 216-217 (1997).
[CrossRef]

1986 (1)

S. R. Elliott, "A unified model for reversible photostructural effects in chalcogenide glasses," J. Non-Cryst. Solids 81, 71-98 (1986)
[CrossRef]

1980 (1)

K. Tanaka, "Reversible photostructural change: Mechanisms, properties and applications," J. Non-Cryst. Solids 35-36, 1023-1034 (1980)
[CrossRef]

1979 (1)

T. T. Nang, M. Okuda and T. Matsushita, "Photo-induced absorption change in some Se-based glass alloy systems," Phys. Rev. B 19,947-955 (1979).
[CrossRef]

1974 (1)

T. Igo, Y. Noguchi and H. Nagai, "Photoexpansion and ‘thermal contraction’ of amorphous chalcogenide glasses," Appl. Phys. Lett. 25, 193-194 (1974)
[CrossRef]

Aers, G. C.

D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, "Postfabrication fine-tuning of photonic crystal microcavities in InAs/InP quantum dot membranes," Appl. Phys. Lett. 87, 151107 (2005).
[CrossRef]

Akahane, Y.

B. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Anand, S.

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Arnold, C.

S. Song, S. Howard, Z. Liu, A. Dirisu, C. Gmachl, and C. Arnold, "Mode tuning of quantum cascade lasers through optical processing of Chalcogenide glass claddings," Appl. Phys. Lett. 89, 041115 (2006).
[CrossRef]

Asano, T.

B. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Bishop, S.

S. Ramachandran and S. Bishop, "Photoinduced integrated-optics in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260-270 (2005).
[CrossRef]

Bolger, J. A.

Chong, H. M. H.

H. M. H. Chong, and R. Delarue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Phot. Tech. Lett. 16, 1528-1530 (2004).
[CrossRef]

Clement, T.

R. Decorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, " High index contrast waveguides in Chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Dalacu, D.

D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, "Postfabrication fine-tuning of photonic crystal microcavities in InAs/InP quantum dot membranes," Appl. Phys. Lett. 87, 151107 (2005).
[CrossRef]

de Sterke, C.

S. Tomljenovic-Hanic, M. Steel, C. de Sterke, and D. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett.Accepted in press.
[PubMed]

Decorby, R.

R. Decorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, " High index contrast waveguides in Chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Delarue, R.

H. M. H. Chong, and R. Delarue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Phot. Tech. Lett. 16, 1528-1530 (2004).
[CrossRef]

Dirisu, A.

S. Song, S. Howard, Z. Liu, A. Dirisu, C. Gmachl, and C. Arnold, "Mode tuning of quantum cascade lasers through optical processing of Chalcogenide glass claddings," Appl. Phys. Lett. 89, 041115 (2006).
[CrossRef]

Dunbar, L. A.

Dwivedi, P.

R. Decorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, " High index contrast waveguides in Chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Eggleton, B.

C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, and B. Eggleton, "Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires," Opt. Express 14, 1070-1078 (2006).
[CrossRef] [PubMed]

M. Shokooh-Saremi, V. Taeed, I. Littler, D. Moss, B. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodised Bragg gratings in Chalcogenide rib waveguides," Electron. Lett. 41, 13-14 (2005).
[CrossRef]

Eggleton, B. J.

Elliot, S. R.

A. Zakery and S. R. Elliot, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

Elliott, S. R.

S. R. Elliott, "A unified model for reversible photostructural effects in chalcogenide glasses," J. Non-Cryst. Solids 81, 71-98 (1986)
[CrossRef]

Emery, T.

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Erickson, D.

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Feigel, A.

V. Lyubin, M. Klebanov, A. Feigel, and B. Sfez, "Films of chalcogenide glassy semiconductors: New phenomena and new applications," Thin Solid Films 459, 183-186 (2004).
[CrossRef]

Ferrini, R.

Frédérick, S.

D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, "Postfabrication fine-tuning of photonic crystal microcavities in InAs/InP quantum dot membranes," Appl. Phys. Lett. 87, 151107 (2005).
[CrossRef]

Freeman, D.

Gmachl, C.

S. Song, S. Howard, Z. Liu, A. Dirisu, C. Gmachl, and C. Arnold, "Mode tuning of quantum cascade lasers through optical processing of Chalcogenide glass claddings," Appl. Phys. Lett. 89, 041115 (2006).
[CrossRef]

Grillet, C.

Hatami, M.

Haugen, C.

R. Decorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, " High index contrast waveguides in Chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Herzig, H. P.

Houdré, R.

Howard, S.

S. Song, S. Howard, Z. Liu, A. Dirisu, C. Gmachl, and C. Arnold, "Mode tuning of quantum cascade lasers through optical processing of Chalcogenide glass claddings," Appl. Phys. Lett. 89, 041115 (2006).
[CrossRef]

Igo, T.

T. Igo, Y. Noguchi and H. Nagai, "Photoexpansion and ‘thermal contraction’ of amorphous chalcogenide glasses," Appl. Phys. Lett. 25, 193-194 (1974)
[CrossRef]

Kasap, S.

R. Decorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, " High index contrast waveguides in Chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Kim, M.

Y. Ruan, M. Kim, Y. Lee, B. Luther-Davies, and A. Rode, "Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography," submitted toApplied Physics Letters.

Klebanov, M.

V. Lyubin, M. Klebanov, A. Feigel, and B. Sfez, "Films of chalcogenide glassy semiconductors: New phenomena and new applications," Thin Solid Films 459, 183-186 (2004).
[CrossRef]

Lee, J-B.

W. Park and J-B. Lee, "Mechanically tunable photonic crystal structure," Appl. Phys. Lett. 85, 4845-4847 (2004).
[CrossRef]

Lee, Y.

Y. Ruan, M. Kim, Y. Lee, B. Luther-Davies, and A. Rode, "Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography," submitted toApplied Physics Letters.

Littler, I.

M. Shokooh-Saremi, V. Taeed, I. Littler, D. Moss, B. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodised Bragg gratings in Chalcogenide rib waveguides," Electron. Lett. 41, 13-14 (2005).
[CrossRef]

Liu, Z.

S. Song, S. Howard, Z. Liu, A. Dirisu, C. Gmachl, and C. Arnold, "Mode tuning of quantum cascade lasers through optical processing of Chalcogenide glass claddings," Appl. Phys. Lett. 89, 041115 (2006).
[CrossRef]

Lizé, Y. K.

Luther-Davies, B.

Lyubin, V.

V. Lyubin, M. Klebanov, A. Feigel, and B. Sfez, "Films of chalcogenide glassy semiconductors: New phenomena and new applications," Thin Solid Films 459, 183-186 (2004).
[CrossRef]

Madden, S.

Magi, E.

Mägi, E. C.

Marki, I.

Martz, J.

Matsushita, T.

T. T. Nang, M. Okuda and T. Matsushita, "Photo-induced absorption change in some Se-based glass alloy systems," Phys. Rev. B 19,947-955 (1979).
[CrossRef]

McMullin, J.

R. Decorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, " High index contrast waveguides in Chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

McPhedran, R.

Moss, D.

C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, and B. Eggleton, "Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires," Opt. Express 14, 1070-1078 (2006).
[CrossRef] [PubMed]

M. Shokooh-Saremi, V. Taeed, I. Littler, D. Moss, B. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodised Bragg gratings in Chalcogenide rib waveguides," Electron. Lett. 41, 13-14 (2005).
[CrossRef]

S. Tomljenovic-Hanic, M. Steel, C. de Sterke, and D. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett.Accepted in press.
[PubMed]

Moss, D. J.

Mulot, M.

Nagai, H.

T. Igo, Y. Noguchi and H. Nagai, "Photoexpansion and ‘thermal contraction’ of amorphous chalcogenide glasses," Appl. Phys. Lett. 25, 193-194 (1974)
[CrossRef]

Nakano, Y.

T. Sudoh, Y. Nakano, and K. Tada, "Wavelength trimming technology for multiple-wavelength distributed feedback laser array by photo-induced refractive index change," Electron. Lett. 33, 216-217 (1997).
[CrossRef]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Nang, T. T.

T. T. Nang, M. Okuda and T. Matsushita, "Photo-induced absorption change in some Se-based glass alloy systems," Phys. Rev. B 19,947-955 (1979).
[CrossRef]

Nguyen, H.

R. Decorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, " High index contrast waveguides in Chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Noda, S.

B. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Noguchi, Y.

T. Igo, Y. Noguchi and H. Nagai, "Photoexpansion and ‘thermal contraction’ of amorphous chalcogenide glasses," Appl. Phys. Lett. 25, 193-194 (1974)
[CrossRef]

Okuda, M.

T. T. Nang, M. Okuda and T. Matsushita, "Photo-induced absorption change in some Se-based glass alloy systems," Phys. Rev. B 19,947-955 (1979).
[CrossRef]

Pai, M.

R. Decorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, " High index contrast waveguides in Chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Park, W.

W. Park and J-B. Lee, "Mechanically tunable photonic crystal structure," Appl. Phys. Lett. 85, 4845-4847 (2004).
[CrossRef]

Ponnampalam, N.

R. Decorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, " High index contrast waveguides in Chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Poole, P. J.

D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, "Postfabrication fine-tuning of photonic crystal microcavities in InAs/InP quantum dot membranes," Appl. Phys. Lett. 87, 151107 (2005).
[CrossRef]

Psaltis, D.

Ramachandran, S.

S. Ramachandran and S. Bishop, "Photoinduced integrated-optics in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260-270 (2005).
[CrossRef]

Rockwood, T.

Rode, A.

Y. Ruan, M. Kim, Y. Lee, B. Luther-Davies, and A. Rode, "Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography," submitted toApplied Physics Letters.

Rode, A. V.

Ruan, Y.

M. Shokooh-Saremi, V. Taeed, I. Littler, D. Moss, B. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodised Bragg gratings in Chalcogenide rib waveguides," Electron. Lett. 41, 13-14 (2005).
[CrossRef]

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low-loss waveguides in ultrafast laser-deposited As_2S_3 chalcogenide films, " J. Opt. Soc. Am. B 20, 1844-1852 (2003).
[CrossRef]

Y. Ruan, M. Kim, Y. Lee, B. Luther-Davies, and A. Rode, "Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography," submitted toApplied Physics Letters.

Salt, M.

Samoc, M.

Sfez, B.

V. Lyubin, M. Klebanov, A. Feigel, and B. Sfez, "Films of chalcogenide glassy semiconductors: New phenomena and new applications," Thin Solid Films 459, 183-186 (2004).
[CrossRef]

Sherer, A.

Shokooh-Saremi, M.

M. Shokooh-Saremi, V. Taeed, I. Littler, D. Moss, B. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodised Bragg gratings in Chalcogenide rib waveguides," Electron. Lett. 41, 13-14 (2005).
[CrossRef]

Smith, C.

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Song, B.

B. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Song, S.

S. Song, S. Howard, Z. Liu, A. Dirisu, C. Gmachl, and C. Arnold, "Mode tuning of quantum cascade lasers through optical processing of Chalcogenide glass claddings," Appl. Phys. Lett. 89, 041115 (2006).
[CrossRef]

Steel, M.

S. Tomljenovic-Hanic, M. Steel, C. de Sterke, and D. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett.Accepted in press.
[PubMed]

Steel, M. J.

Steinvurzel, P.

Sudoh, T.

T. Sudoh, Y. Nakano, and K. Tada, "Wavelength trimming technology for multiple-wavelength distributed feedback laser array by photo-induced refractive index change," Electron. Lett. 33, 216-217 (1997).
[CrossRef]

Tada, K.

T. Sudoh, Y. Nakano, and K. Tada, "Wavelength trimming technology for multiple-wavelength distributed feedback laser array by photo-induced refractive index change," Electron. Lett. 33, 216-217 (1997).
[CrossRef]

Taeed, V.

M. Shokooh-Saremi, V. Taeed, I. Littler, D. Moss, B. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodised Bragg gratings in Chalcogenide rib waveguides," Electron. Lett. 41, 13-14 (2005).
[CrossRef]

Ta'eed, V. G.

Tanaka, K.

K. Tanaka, "Reversible photostructural change: Mechanisms, properties and applications," J. Non-Cryst. Solids 35-36, 1023-1034 (1980)
[CrossRef]

Tomljenovic-Hanic, S.

S. Tomljenovic-Hanic, M. Steel, C. de Sterke, and D. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett.Accepted in press.
[PubMed]

Vuckovic, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Wild, B.

Williams, R. L.

D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, "Postfabrication fine-tuning of photonic crystal microcavities in InAs/InP quantum dot membranes," Appl. Phys. Lett. 87, 151107 (2005).
[CrossRef]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Zabelin, V.

Zakery, A.

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Zuppiroli, L.

Appl. Phys. Lett. (4)

D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, "Postfabrication fine-tuning of photonic crystal microcavities in InAs/InP quantum dot membranes," Appl. Phys. Lett. 87, 151107 (2005).
[CrossRef]

W. Park and J-B. Lee, "Mechanically tunable photonic crystal structure," Appl. Phys. Lett. 85, 4845-4847 (2004).
[CrossRef]

S. Song, S. Howard, Z. Liu, A. Dirisu, C. Gmachl, and C. Arnold, "Mode tuning of quantum cascade lasers through optical processing of Chalcogenide glass claddings," Appl. Phys. Lett. 89, 041115 (2006).
[CrossRef]

T. Igo, Y. Noguchi and H. Nagai, "Photoexpansion and ‘thermal contraction’ of amorphous chalcogenide glasses," Appl. Phys. Lett. 25, 193-194 (1974)
[CrossRef]

Applied Physics Letters. (1)

Y. Ruan, M. Kim, Y. Lee, B. Luther-Davies, and A. Rode, "Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography," submitted toApplied Physics Letters.

Electron. Lett. (2)

M. Shokooh-Saremi, V. Taeed, I. Littler, D. Moss, B. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodised Bragg gratings in Chalcogenide rib waveguides," Electron. Lett. 41, 13-14 (2005).
[CrossRef]

T. Sudoh, Y. Nakano, and K. Tada, "Wavelength trimming technology for multiple-wavelength distributed feedback laser array by photo-induced refractive index change," Electron. Lett. 33, 216-217 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Ramachandran and S. Bishop, "Photoinduced integrated-optics in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260-270 (2005).
[CrossRef]

R. Decorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, " High index contrast waveguides in Chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

IEEE Phot. Tech. Lett. (1)

H. M. H. Chong, and R. Delarue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Phot. Tech. Lett. 16, 1528-1530 (2004).
[CrossRef]

J. Non-Cryst. Solids (3)

A. Zakery and S. R. Elliot, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

K. Tanaka, "Reversible photostructural change: Mechanisms, properties and applications," J. Non-Cryst. Solids 35-36, 1023-1034 (1980)
[CrossRef]

S. R. Elliott, "A unified model for reversible photostructural effects in chalcogenide glasses," J. Non-Cryst. Solids 81, 71-98 (1986)
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature Mater. (1)

B. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. B (1)

T. T. Nang, M. Okuda and T. Matsushita, "Photo-induced absorption change in some Se-based glass alloy systems," Phys. Rev. B 19,947-955 (1979).
[CrossRef]

Phys. Rev. Lett. (1)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Thin Solid Films (1)

V. Lyubin, M. Klebanov, A. Feigel, and B. Sfez, "Films of chalcogenide glassy semiconductors: New phenomena and new applications," Thin Solid Films 459, 183-186 (2004).
[CrossRef]

Other (3)

J-M. Lourtioz, H. Benisty, V. Berger, J-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, 2005).

J. M. Gerard and B. Gayral, "Toward high-efficiency quantum-dot single photon sources," in Quantum Dots, Nanoparticles, and Nanoclusters, D. L. Huffaker and P. Bhattacharya, eds, Proc. SPIE 5361, 88-95 (2004).
[CrossRef]

S. Madden, "Investigation into the photosensitivity of AMTIR-1 films," Laser Physics Centre, Australian National University (personal communication, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

A schematic diagram showing the principle of the photosensitive post tuning of a chalcogenide photonic crystal waveguide.

Fig. 2.
Fig. 2.

(a) Optical microscope image of the W1 PhC waveguide used in this experiment. (b) Scanning electron microscope image. Hole pitch is 550nm.

Fig. 3.
Fig. 3.

A schematic diagram of the experimental setup for both coupling into the Photonic Crystal Waveguide (PCWG) using evanescent coupling and photosensitive post-processing the PhC sample.

Fig. 4.
Fig. 4.

a) Schematic showing the coupling from a tapered fibre to PhC waveguide, b) Band structure of the W1 waveguide used in this work (red) overlaid with the dispersion curve of the tapered fiber in green.

Fig.5.
Fig.5.

Transmission spectrum through the tapered fiber for coupling to the W1 waveguide, with the fiber in direct contact with the waveguide. Dashed lines represent numerically predicted values for the TE0 and TE1 coupling resonances.

Fig. 6.
Fig. 6.

Photosensitive tuning of the TE0 mode during the exposure. The resonance dip is plotted for a range of times during the exposure.

Fig. 7.
Fig. 7.

Shift in coupling wavelength versus exposure fluence at 633nm of the PhC TE0 waveguide mode.

Metrics