Abstract

We perform a series of simulations and experiments at microwave frequencies where we dynamically alter the magnetic resonance of one individual split ring resonator by photodoping a piece of low-doped semiconductor positioned within the gap of the resonator. We predict and experimentally achieve a complete suppression of the resonance amplitude using an 815 nm laser source and then briefly consider the problem of tuning the frequency of an SRR by the same method. We also illustrate the metamaterial approach to active electromagnetic devices by implementing a simple yet efficient optical modulator and a three channel dynamical filter.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Walser, “Electromagnetic metamaterials,” in Complex Mediums II: Beyond Linear Isotropic Dielectrics, A. Lakhtakia, W. S. Weiglhofer, and I. J. Hodgkinson, eds.,Proc. SPIE4467,1–15 (2001).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084 (1999).
    [CrossRef]
  3. D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett 84,4184–4187 (2000).
    [CrossRef] [PubMed]
  4. R. W. Ziolkowski and N. Engheta, “Metamaterial special issue introduction,” IEEE Trans. Antennas Propag 51,2546–2549 (2003).
    [CrossRef]
  5. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305,788–792 (2004).
    [CrossRef] [PubMed]
  6. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of eand μ,” Sov. Phys. Usp 10,509–514 (1968).
    [CrossRef]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett 85,3966–3969 (2000).
    [CrossRef] [PubMed]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292,77–79 (2001).
    [CrossRef] [PubMed]
  9. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett 90,107401 (2003).
    [CrossRef] [PubMed]
  10. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett 90,137401 (2003).
    [CrossRef] [PubMed]
  11. J.B. Pendry, “Introduction,” Opt. Express 11,639–639 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-7-639.
    [CrossRef] [PubMed]
  12. A. Lakhtakia and M. McCall, “Focus on negative refraction,” New J. Phys 7 (2005).
    [CrossRef]
  13. V. G. Veselago, L. Braginsky, V. Shkover, and C. Hafner, “Negative refractive index materials,” J. Comput. Theoretical Nanoscience 3,189–218 (2006).
  14. A. L. Pokrovsky and A. L. Efros, “Diffraction theory and focusing of light by a slab of left-handed material,” Physica B-Cond. Mat 338,333–337 (2003).
    [CrossRef]
  15. W. T. Lu and S. Sridhar, “Flat lens without optical axis: Theory of imaging,” Opt. Express 13,10673–10680 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-7-639.
    [CrossRef] [PubMed]
  16. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett 90,077405 (2003).
    [CrossRef] [PubMed]
  17. D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys 7,162 (2005).
    [CrossRef]
  18. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett 84,2244–2246 (2004).
    [CrossRef]
  19. A. Degiron, D. R. Smith, J. J. Mock, B. J. Justice, and J. Gollub, “Negative Index and Indefinite Media Waveguide Couplers,” Appl. Phys. A, in press.
  20. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71,036609 (2005).
    [CrossRef]
  21. R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett 87,091114 (2005).
    [CrossRef]
  22. T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, “Free-space microwave focusing by a negative-index gradient lens,” Appl. Phys. Lett 88,081101 (2006).
    [CrossRef]
  23. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312,1780–1782 (2006).
    [CrossRef] [PubMed]
  24. U. Leonhardt, “Optical Conformal Mapping,” Science 312,1777–1780 (2006).
    [CrossRef] [PubMed]
  25. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science, 314,977–980 (2006).
    [CrossRef] [PubMed]
  26. S. Lim, C. Caloz, and T Itoh, IEEE Trans. Microw. Theory Tech52,2678–2690 (2004).
    [CrossRef]
  27. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express 14,9344–9349 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9344.
    [CrossRef] [PubMed]
  28. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical Electric and Magnetic Metama-terial Response at Terahertz Frequencies,” Phys. Rev. Lett 96,107401 (2006).
    [CrossRef] [PubMed]
  29. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444,597–600 (2006).
    [CrossRef] [PubMed]
  30. J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys 98,033103 (2005).
    [CrossRef]
  31. P. Bhattacharya, “Semiconductor Optoelectronic Devices,” (Prentice Hall, Upper Saddle River, 1997).
  32. C. H. Lee, P. S. Mak, and A. P.De Fonzo, “Optical control of millimeter-wave propagation in dielectric waveguides,” IEEE J. Quantum. Electron 16,277–288 (1980).
    [CrossRef]
  33. B. J. Justice, J. J. Mock, L. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express 14,8694–8705 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-19-8694.
    [CrossRef] [PubMed]

2006 (9)

V. G. Veselago, L. Braginsky, V. Shkover, and C. Hafner, “Negative refractive index materials,” J. Comput. Theoretical Nanoscience 3,189–218 (2006).

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, “Free-space microwave focusing by a negative-index gradient lens,” Appl. Phys. Lett 88,081101 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312,1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical Conformal Mapping,” Science 312,1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science, 314,977–980 (2006).
[CrossRef] [PubMed]

I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express 14,9344–9349 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9344.
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical Electric and Magnetic Metama-terial Response at Terahertz Frequencies,” Phys. Rev. Lett 96,107401 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

B. J. Justice, J. J. Mock, L. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express 14,8694–8705 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-19-8694.
[CrossRef] [PubMed]

2005 (6)

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71,036609 (2005).
[CrossRef]

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett 87,091114 (2005).
[CrossRef]

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys 98,033103 (2005).
[CrossRef]

A. Lakhtakia and M. McCall, “Focus on negative refraction,” New J. Phys 7 (2005).
[CrossRef]

W. T. Lu and S. Sridhar, “Flat lens without optical axis: Theory of imaging,” Opt. Express 13,10673–10680 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-7-639.
[CrossRef] [PubMed]

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys 7,162 (2005).
[CrossRef]

2004 (2)

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett 84,2244–2246 (2004).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305,788–792 (2004).
[CrossRef] [PubMed]

2003 (6)

R. W. Ziolkowski and N. Engheta, “Metamaterial special issue introduction,” IEEE Trans. Antennas Propag 51,2546–2549 (2003).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett 90,107401 (2003).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett 90,137401 (2003).
[CrossRef] [PubMed]

J.B. Pendry, “Introduction,” Opt. Express 11,639–639 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-7-639.
[CrossRef] [PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett 90,077405 (2003).
[CrossRef] [PubMed]

A. L. Pokrovsky and A. L. Efros, “Diffraction theory and focusing of light by a slab of left-handed material,” Physica B-Cond. Mat 338,333–337 (2003).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292,77–79 (2001).
[CrossRef] [PubMed]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett 85,3966–3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett 84,4184–4187 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084 (1999).
[CrossRef]

1980 (1)

C. H. Lee, P. S. Mak, and A. P.De Fonzo, “Optical control of millimeter-wave propagation in dielectric waveguides,” IEEE J. Quantum. Electron 16,277–288 (1980).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of eand μ,” Sov. Phys. Usp 10,509–514 (1968).
[CrossRef]

Averitt, R. D.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical Electric and Magnetic Metama-terial Response at Terahertz Frequencies,” Phys. Rev. Lett 96,107401 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

Baena, J. D.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys 98,033103 (2005).
[CrossRef]

Basov, D. N.

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, “Free-space microwave focusing by a negative-index gradient lens,” Appl. Phys. Lett 88,081101 (2006).
[CrossRef]

Bhattacharya, P.

P. Bhattacharya, “Semiconductor Optoelectronic Devices,” (Prentice Hall, Upper Saddle River, 1997).

Braginsky, L.

V. G. Veselago, L. Braginsky, V. Shkover, and C. Hafner, “Negative refractive index materials,” J. Comput. Theoretical Nanoscience 3,189–218 (2006).

Brock, J. B.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett 90,137401 (2003).
[CrossRef] [PubMed]

Caloz, C.

S. Lim, C. Caloz, and T Itoh, IEEE Trans. Microw. Theory Tech52,2678–2690 (2004).
[CrossRef]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

Chuang, I. L.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett 90,137401 (2003).
[CrossRef] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science, 314,977–980 (2006).
[CrossRef] [PubMed]

Degiron, A.

Driscoll, T.

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, “Free-space microwave focusing by a negative-index gradient lens,” Appl. Phys. Lett 88,081101 (2006).
[CrossRef]

Efros, A. L.

A. L. Pokrovsky and A. L. Efros, “Diffraction theory and focusing of light by a slab of left-handed material,” Physica B-Cond. Mat 338,333–337 (2003).
[CrossRef]

Engheta, N.

R. W. Ziolkowski and N. Engheta, “Metamaterial special issue introduction,” IEEE Trans. Antennas Propag 51,2546–2549 (2003).
[CrossRef]

Fonzo, A. P.De

C. H. Lee, P. S. Mak, and A. P.De Fonzo, “Optical control of millimeter-wave propagation in dielectric waveguides,” IEEE J. Quantum. Electron 16,277–288 (1980).
[CrossRef]

García-García, J.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys 98,033103 (2005).
[CrossRef]

Gollub, J.

A. Degiron, D. R. Smith, J. J. Mock, B. J. Justice, and J. Gollub, “Negative Index and Indefinite Media Waveguide Couplers,” Appl. Phys. A, in press.

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

Greegor, R. B.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett 87,091114 (2005).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett 90,107401 (2003).
[CrossRef] [PubMed]

Guo, L.

Hafner, C.

V. G. Veselago, L. Braginsky, V. Shkover, and C. Hafner, “Negative refractive index materials,” J. Comput. Theoretical Nanoscience 3,189–218 (2006).

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical Electric and Magnetic Metama-terial Response at Terahertz Frequencies,” Phys. Rev. Lett 96,107401 (2006).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084 (1999).
[CrossRef]

Houck, A. A.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett 90,137401 (2003).
[CrossRef] [PubMed]

Itoh, T

S. Lim, C. Caloz, and T Itoh, IEEE Trans. Microw. Theory Tech52,2678–2690 (2004).
[CrossRef]

Jelinek, L.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys 98,033103 (2005).
[CrossRef]

Justice, B. J.

B. J. Justice, J. J. Mock, L. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express 14,8694–8705 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-19-8694.
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science, 314,977–980 (2006).
[CrossRef] [PubMed]

A. Degiron, D. R. Smith, J. J. Mock, B. J. Justice, and J. Gollub, “Negative Index and Indefinite Media Waveguide Couplers,” Appl. Phys. A, in press.

Kivshar, Y. S.

Kolinko, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett 84,2244–2246 (2004).
[CrossRef]

Koltenbah, B. E. C.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett 90,107401 (2003).
[CrossRef] [PubMed]

Lakhtakia, A.

A. Lakhtakia and M. McCall, “Focus on negative refraction,” New J. Phys 7 (2005).
[CrossRef]

Lee, C. H.

C. H. Lee, P. S. Mak, and A. P.De Fonzo, “Optical control of millimeter-wave propagation in dielectric waveguides,” IEEE J. Quantum. Electron 16,277–288 (1980).
[CrossRef]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical Electric and Magnetic Metama-terial Response at Terahertz Frequencies,” Phys. Rev. Lett 96,107401 (2006).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt, “Optical Conformal Mapping,” Science 312,1777–1780 (2006).
[CrossRef] [PubMed]

Li, K.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett 90,107401 (2003).
[CrossRef] [PubMed]

Lim, S.

S. Lim, C. Caloz, and T Itoh, IEEE Trans. Microw. Theory Tech52,2678–2690 (2004).
[CrossRef]

Lu, W. T.

Mak, P. S.

C. H. Lee, P. S. Mak, and A. P.De Fonzo, “Optical control of millimeter-wave propagation in dielectric waveguides,” IEEE J. Quantum. Electron 16,277–288 (1980).
[CrossRef]

Marqués, R.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys 98,033103 (2005).
[CrossRef]

Martín, F.

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys 98,033103 (2005).
[CrossRef]

McCall, M.

A. Lakhtakia and M. McCall, “Focus on negative refraction,” New J. Phys 7 (2005).
[CrossRef]

Mock, J. J.

B. J. Justice, J. J. Mock, L. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express 14,8694–8705 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-19-8694.
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science, 314,977–980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71,036609 (2005).
[CrossRef]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett 84,2244–2246 (2004).
[CrossRef]

A. Degiron, D. R. Smith, J. J. Mock, B. J. Justice, and J. Gollub, “Negative Index and Indefinite Media Waveguide Couplers,” Appl. Phys. A, in press.

Morrison, S. K.

Nemat-Nasser, S.

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, “Free-space microwave focusing by a negative-index gradient lens,” Appl. Phys. Lett 88,081101 (2006).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett 84,4184–4187 (2000).
[CrossRef] [PubMed]

Nielsen, J. A.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett 87,091114 (2005).
[CrossRef]

Padilla, W.

D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett 84,4184–4187 (2000).
[CrossRef] [PubMed]

Padilla, W. J.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical Electric and Magnetic Metama-terial Response at Terahertz Frequencies,” Phys. Rev. Lett 96,107401 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

Parazzoli, C. G.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett 87,091114 (2005).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett 90,107401 (2003).
[CrossRef] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science, 314,977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312,1780–1782 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305,788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett 85,3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084 (1999).
[CrossRef]

Pendry, J.B.

Pokrovsky, A. L.

A. L. Pokrovsky and A. L. Efros, “Diffraction theory and focusing of light by a slab of left-handed material,” Physica B-Cond. Mat 338,333–337 (2003).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084 (1999).
[CrossRef]

Rye, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett 84,2244–2246 (2004).
[CrossRef]

Rye, P. M.

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, “Free-space microwave focusing by a negative-index gradient lens,” Appl. Phys. Lett 88,081101 (2006).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292,77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett 84,4184–4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312,1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science, 314,977–980 (2006).
[CrossRef] [PubMed]

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, “Free-space microwave focusing by a negative-index gradient lens,” Appl. Phys. Lett 88,081101 (2006).
[CrossRef]

B. J. Justice, J. J. Mock, L. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express 14,8694–8705 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-19-8694.
[CrossRef] [PubMed]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71,036609 (2005).
[CrossRef]

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys 7,162 (2005).
[CrossRef]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett 84,2244–2246 (2004).
[CrossRef]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett 90,077405 (2003).
[CrossRef] [PubMed]

Shadrivov, I. V.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292,77–79 (2001).
[CrossRef] [PubMed]

Shkover, V.

V. G. Veselago, L. Braginsky, V. Shkover, and C. Hafner, “Negative refractive index materials,” J. Comput. Theoretical Nanoscience 3,189–218 (2006).

Smith, D. R.

B. J. Justice, J. J. Mock, L. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express 14,8694–8705 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-19-8694.
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science, 314,977–980 (2006).
[CrossRef] [PubMed]

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, “Free-space microwave focusing by a negative-index gradient lens,” Appl. Phys. Lett 88,081101 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312,1780–1782 (2006).
[CrossRef] [PubMed]

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett 87,091114 (2005).
[CrossRef]

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys 7,162 (2005).
[CrossRef]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71,036609 (2005).
[CrossRef]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett 84,2244–2246 (2004).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305,788–792 (2004).
[CrossRef] [PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett 90,077405 (2003).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292,77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett 84,4184–4187 (2000).
[CrossRef] [PubMed]

A. Degiron, D. R. Smith, J. J. Mock, B. J. Justice, and J. Gollub, “Negative Index and Indefinite Media Waveguide Couplers,” Appl. Phys. A, in press.

Sridhar, S.

Starr, A. F.

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, “Free-space microwave focusing by a negative-index gradient lens,” Appl. Phys. Lett 88,081101 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science, 314,977–980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71,036609 (2005).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084 (1999).
[CrossRef]

Tanielian, M.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett 90,107401 (2003).
[CrossRef] [PubMed]

Tanielian, M. H.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett 87,091114 (2005).
[CrossRef]

Taylor, A. J.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical Electric and Magnetic Metama-terial Response at Terahertz Frequencies,” Phys. Rev. Lett 96,107401 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

Thompson, M. A.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett 87,091114 (2005).
[CrossRef]

Veselago, V. G.

V. G. Veselago, L. Braginsky, V. Shkover, and C. Hafner, “Negative refractive index materials,” J. Comput. Theoretical Nanoscience 3,189–218 (2006).

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of eand μ,” Sov. Phys. Usp 10,509–514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett 84,4184–4187 (2000).
[CrossRef] [PubMed]

Walser, R. M.

R. M. Walser, “Electromagnetic metamaterials,” in Complex Mediums II: Beyond Linear Isotropic Dielectrics, A. Lakhtakia, W. S. Weiglhofer, and I. J. Hodgkinson, eds.,Proc. SPIE4467,1–15 (2001).
[CrossRef]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305,788–792 (2004).
[CrossRef] [PubMed]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

Ziolkowski, R. W.

R. W. Ziolkowski and N. Engheta, “Metamaterial special issue introduction,” IEEE Trans. Antennas Propag 51,2546–2549 (2003).
[CrossRef]

Appl. Phys. Lett (3)

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett 87,091114 (2005).
[CrossRef]

T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, “Free-space microwave focusing by a negative-index gradient lens,” Appl. Phys. Lett 88,081101 (2006).
[CrossRef]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, Appl. Phys. Lett 84,2244–2246 (2004).
[CrossRef]

IEEE J. Quantum. Electron (1)

C. H. Lee, P. S. Mak, and A. P.De Fonzo, “Optical control of millimeter-wave propagation in dielectric waveguides,” IEEE J. Quantum. Electron 16,277–288 (1980).
[CrossRef]

IEEE Trans. Antennas Propag (1)

R. W. Ziolkowski and N. Engheta, “Metamaterial special issue introduction,” IEEE Trans. Antennas Propag 51,2546–2549 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Technol (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084 (1999).
[CrossRef]

J. Appl. Phys (1)

J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” J. Appl. Phys 98,033103 (2005).
[CrossRef]

J. Comput. Theoretical Nanoscience (1)

V. G. Veselago, L. Braginsky, V. Shkover, and C. Hafner, “Negative refractive index materials,” J. Comput. Theoretical Nanoscience 3,189–218 (2006).

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz meta-material devices,” Nature 444,597–600 (2006).
[CrossRef] [PubMed]

New J. Phys (2)

A. Lakhtakia and M. McCall, “Focus on negative refraction,” New J. Phys 7 (2005).
[CrossRef]

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys 7,162 (2005).
[CrossRef]

Opt. Express (4)

Phys. Rev. E (1)

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71,036609 (2005).
[CrossRef]

Phys. Rev. Lett (6)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical Electric and Magnetic Metama-terial Response at Terahertz Frequencies,” Phys. Rev. Lett 96,107401 (2006).
[CrossRef] [PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett 90,077405 (2003).
[CrossRef] [PubMed]

D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett 84,4184–4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett 85,3966–3969 (2000).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett 90,107401 (2003).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett 90,137401 (2003).
[CrossRef] [PubMed]

Physica B-Cond. Mat (1)

A. L. Pokrovsky and A. L. Efros, “Diffraction theory and focusing of light by a slab of left-handed material,” Physica B-Cond. Mat 338,333–337 (2003).
[CrossRef]

Science (5)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292,77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305,788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312,1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical Conformal Mapping,” Science 312,1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science, 314,977–980 (2006).
[CrossRef] [PubMed]

Sov. Phys. Usp (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of eand μ,” Sov. Phys. Usp 10,509–514 (1968).
[CrossRef]

Other (4)

R. M. Walser, “Electromagnetic metamaterials,” in Complex Mediums II: Beyond Linear Isotropic Dielectrics, A. Lakhtakia, W. S. Weiglhofer, and I. J. Hodgkinson, eds.,Proc. SPIE4467,1–15 (2001).
[CrossRef]

S. Lim, C. Caloz, and T Itoh, IEEE Trans. Microw. Theory Tech52,2678–2690 (2004).
[CrossRef]

A. Degiron, D. R. Smith, J. J. Mock, B. J. Justice, and J. Gollub, “Negative Index and Indefinite Media Waveguide Couplers,” Appl. Phys. A, in press.

P. Bhattacharya, “Semiconductor Optoelectronic Devices,” (Prentice Hall, Upper Saddle River, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

General setup. A single SRR containing a small piece of silicon in its gap is loaded in a waveguide defined by two horizontal metal plates and two vertical absorbing plates. The waveguide is 5 cm large and 1.55 cm high. Only the fundamental mode is excited in the frequency range under investigation (7–10 GHz).

Fig. 2.
Fig. 2.

S21 parameter as a function of frequency for the controllable SRR shown in the inset. The calculations have been performed for increasing levels of photodoping as indicated in the legend box. The SRR is 3 mm long, 4 mm high, 17 μm thick; its linewidth is 0.5 mm while its gap is 0.15 mm wide. The silicon slice has the same width as the SRR gap so that there is an electrical contact between the two materials.

Fig. 3.
Fig. 3.

S21 parameter as a function of frequency for the controllable SRR shown in the inset. The calculations have been performed for increasing levels of photodoping as indicated in the legend box. The structure is almost identical as in Fig. 2 except that the SRR gap has been widened from 0.15 to 0.18 mm. Thus, in this case, there is no electrical contact between the silicon slice and the SRR gap.

Fig. 4.
Fig. 4.

Evolution of the real part of the silicon permittivity and dielectric loss tangent as a function of the conductivity.

Fig. 5.
Fig. 5.

S21 parameter as a function of frequency for three photodoping schemes. The schematics show the cross-sections perpendicular to the SRR plane (the aspect ratio is different from the actual models). In each case, the gold regions represent the SRR arms; the red box is the silicon slice inside which the photodoped region is highlighted by a hatched pattern. The calculations have been performed using the same level of photodoping in all three configurations (σ = 15 S.m-1).

Fig. 6.
Fig. 6.

(a) From left to right: rear view showing the fiber glued in the hole of the substrate; SRR gap with the hole and fiber in place; SRR gap with the fiber coupled to a 632 nm laser diode; SRR gap with the silicon slice covering the hole; SRR gap with silver epoxy at the junction of the silicon and the SRR. (b) Experimental S21 parameters when the SRR is controlled with an 815 nm laser diode. The SRR dimensions are listed in Fig. 2.

Fig. 7.
Fig. 7.

Experimental S21 parameter for a SRR controlled with an 815 nm laser diode. This is the same structure as in Fig. 6, except that the silicon in the gap has no electrical contact with the SRR (cf. 4th picture of Fig. 6(a)).

Fig. 8.
Fig. 8.

Modulating the transmission amplitude between two dielectric waveguides. (a) General overview. Here the SRR dimensions are 4 mm × 4 mm, with a linewidth and gap size of 0.5 mm. The whole setup is in fact inserted between two horizontal Al plates (not shown here). (b) Experimental map of the electric field intensity recorded at 8.8 GHz when the silicon is illuminated by the laser (color scale in dB). (c) Experimental map of the electric field intensity recorded at 8.8 GHz when the silicon in the SRR gap is not illuminated by the laser (color scale in dB).

Fig. 9.
Fig. 9.

A dynamic three channel filter. (a) Experiment setup comprising two dielectric waveguides separated by the dynamic filter. The optical fibers that bring the laser light within each SRR gap are clearly visible in the upper part of the picture. Insets: general overview and closer view of the filter. (b) S21 parameters as a function of the frequency when the dynamic filter is left in the dark (black curve) and when the amplitude of each SRR is successively modulated with the laser diode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε Si e h = 11.8 ω pe 2 ω 2 + v e 2 ( 1 i v e ω ) ω ph 2 ω 2 + v h 2 ( 1 i v h ω ) .
σ ( ii ) = 0.5 σ ( i )

Metrics