Abstract

Metallic plates embedded between dielectric slabs and perforated by rectangular arrays of subwavelength holes with a dense periodicity in one of the directions support extraordinary transmission (ET) phenomena, viz. strong peaks in the transmittance frequency dependence. Stacks of such perforated plates support ET phenomena with propagation along the stack axis that is characterized by the left handed behavior. The incorporation of the dielectric materials and dense periodicity allows significantly reducing the illuminated area of the perforated plate required experimentally to observe the ET phenomena as compared to the areas required in the case of free standing rectangular hole arrays. This facilitates the experimental investigation of ET under excitation in the Fresnel zone of aussian beams.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays

Miguel Beruete, Mario Sorolla, and Igor Campillo
Opt. Express 14(12) 5445-5455 (2006)

Collimations and negative refractions by slabs of 2D photonic crystals with periodically-aligned tube-type air holes

Hao Zhang, Heyuan Zhu, Liejia Qian, and Dianyuan Fan
Opt. Express 15(6) 3519-3530 (2007)

Polarized left-handed extraordinary optical transmission of subterahertz waves

Miguel Beruete, Miguel Navarro-Cía, Mario Sorolla, and Igor Campillo
Opt. Express 15(13) 8125-8134 (2007)

References

  • View by:
  • |
  • |
  • |

  1. V.G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Soviet Physics Uspekhi 10,509–514, (1968).
    [Crossref]
  2. J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett 85,3966–3969, (2000).
    [Crossref] [PubMed]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
    [Crossref] [PubMed]
  4. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett 76,4773–4776, (1996).
    [Crossref] [PubMed]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084, (1999).
    [Crossref]
  6. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
    [Crossref]
  7. Masaya Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron 34,133–143, (2002).
    [Crossref]
  8. Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68,045115-1-15 (2003).
    [Crossref]
  9. Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
    [Crossref] [PubMed]
  10. M. Beruete, M. Sorolla, and I. Campillo,“Left-Handed Extraordinary Optical Transmission through Photonic Crystal Subwavelength Hole Arrays,” Opt. Express 14,5445–5455, (2006).
    [Crossref] [PubMed]
  11. T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
    [Crossref]
  12. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett 58,2059–2062, (1987).
    [Crossref] [PubMed]
  13. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett 58,2486–2489, (1987).
    [Crossref] [PubMed]
  14. Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
    [Crossref]
  15. Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
    [Crossref] [PubMed]
  16. M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding Left- or Right-Handed Metamaterials by Stacked Cut-Off Metallic Hole Arrays,” accepted in the IEEE Trans. Antennas Propag., Special Issue in honor of Prof. L. B. Felsen, (2007).
  17. M. Beruete, M. Sorolla, and I. Campillo, “Inhibiting Negative Index of Refraction by a Band Gap of Stacked Cut-off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 17,16–18, (2007).
    [Crossref]
  18. Zhichao Ruan and Min Qiu, “Negative refraction and sub-wavelength imaging through surface waves on structured perfect conductor surfaces,” Opt. Express 14,6172–6177, (2006).
    [Crossref] [PubMed]
  19. Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
    [Crossref] [PubMed]
  20. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
    [Crossref] [PubMed]
  21. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847–848, (2004).
    [Crossref] [PubMed]
  22. M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67,085415, (2003).
    [Crossref]
  23. Vitaliy Lomakin and Eric Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71,235117-1-10 (2005).
    [Crossref]
  24. F. J.García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72,016608-1-4 (2005).
    [Crossref]
  25. M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
    [Crossref]
  26. M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
    [Crossref]
  27. M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the Transmission in Cut-Off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 15,116–118, (2005).
    [Crossref]
  28. P.F. Goldsmith, Quasioptical Systems - Gaussian Beam, Quasioptical Propagation, and Applications, IEEE Press, (1998).
  29. H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329, (1966).
    [Crossref]
  30. V. Lomakin, N.W. Chen, S. Q. Li, and E. Michielssen, “Enhanced transmission through two-period arrays of sub-wavelength holes,” IEEE Microwave Wirel. Compon. Lett 14,355–357, (2004)
    [Crossref]
  31. V. Lomakin, S.Q. Li, and E. Michielssen, “Manipulation of stop-band gaps of periodically perforated conducting plates,” IEEE Microwave Wirel. Compon. Lett 15,919–921, (2005).
    [Crossref]
  32. V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag 54,970–984, (2006).
    [Crossref]
  33. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
    [Crossref]

2007 (1)

M. Beruete, M. Sorolla, and I. Campillo, “Inhibiting Negative Index of Refraction by a Band Gap of Stacked Cut-off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 17,16–18, (2007).
[Crossref]

2006 (6)

Zhichao Ruan and Min Qiu, “Negative refraction and sub-wavelength imaging through surface waves on structured perfect conductor surfaces,” Opt. Express 14,6172–6177, (2006).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, and I. Campillo,“Left-Handed Extraordinary Optical Transmission through Photonic Crystal Subwavelength Hole Arrays,” Opt. Express 14,5445–5455, (2006).
[Crossref] [PubMed]

Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
[Crossref] [PubMed]

V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag 54,970–984, (2006).
[Crossref]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

2005 (6)

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the Transmission in Cut-Off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 15,116–118, (2005).
[Crossref]

V. Lomakin, S.Q. Li, and E. Michielssen, “Manipulation of stop-band gaps of periodically perforated conducting plates,” IEEE Microwave Wirel. Compon. Lett 15,919–921, (2005).
[Crossref]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

Vitaliy Lomakin and Eric Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71,235117-1-10 (2005).
[Crossref]

F. J.García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72,016608-1-4 (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

2004 (4)

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847–848, (2004).
[Crossref] [PubMed]

V. Lomakin, N.W. Chen, S. Q. Li, and E. Michielssen, “Enhanced transmission through two-period arrays of sub-wavelength holes,” IEEE Microwave Wirel. Compon. Lett 14,355–357, (2004)
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

2003 (3)

Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68,045115-1-15 (2003).
[Crossref]

Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
[Crossref] [PubMed]

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67,085415, (2003).
[Crossref]

2002 (1)

Masaya Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron 34,133–143, (2002).
[Crossref]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

2000 (2)

J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett 85,3966–3969, (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084, (1999).
[Crossref]

1998 (1)

T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett 76,4773–4776, (1996).
[Crossref] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett 58,2059–2062, (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett 58,2486–2489, (1987).
[Crossref] [PubMed]

1968 (1)

V.G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Soviet Physics Uspekhi 10,509–514, (1968).
[Crossref]

1966 (1)

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329, (1966).
[Crossref]

Abajo, F. J.García de

F. J.García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72,016608-1-4 (2005).
[Crossref]

Aydin, Koray

Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
[Crossref] [PubMed]

Baena, J. D.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

Beruete, M.

M. Beruete, M. Sorolla, and I. Campillo, “Inhibiting Negative Index of Refraction by a Band Gap of Stacked Cut-off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 17,16–18, (2007).
[Crossref]

M. Beruete, M. Sorolla, and I. Campillo,“Left-Handed Extraordinary Optical Transmission through Photonic Crystal Subwavelength Hole Arrays,” Opt. Express 14,5445–5455, (2006).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the Transmission in Cut-Off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 15,116–118, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding Left- or Right-Handed Metamaterials by Stacked Cut-Off Metallic Hole Arrays,” accepted in the IEEE Trans. Antennas Propag., Special Issue in honor of Prof. L. B. Felsen, (2007).

Bonache, J.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

Bravo-Abad, J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

Brueck, S. R. J.

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

Campillo, I.

M. Beruete, M. Sorolla, and I. Campillo, “Inhibiting Negative Index of Refraction by a Band Gap of Stacked Cut-off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 17,16–18, (2007).
[Crossref]

M. Beruete, M. Sorolla, and I. Campillo,“Left-Handed Extraordinary Optical Transmission through Photonic Crystal Subwavelength Hole Arrays,” Opt. Express 14,5445–5455, (2006).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the Transmission in Cut-Off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 15,116–118, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding Left- or Right-Handed Metamaterials by Stacked Cut-Off Metallic Hole Arrays,” accepted in the IEEE Trans. Antennas Propag., Special Issue in honor of Prof. L. B. Felsen, (2007).

Chen, N.W.

V. Lomakin, N.W. Chen, S. Q. Li, and E. Michielssen, “Enhanced transmission through two-period arrays of sub-wavelength holes,” IEEE Microwave Wirel. Compon. Lett 14,355–357, (2004)
[Crossref]

Cubukcu, Ertugrul

Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
[Crossref] [PubMed]

Degiron, A.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

Dolado, J.S.

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the Transmission in Cut-Off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 15,116–118, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

Dolling, Gunnar

Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
[Crossref] [PubMed]

Ebbesen, T. W.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

Ebbesen, T.W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
[Crossref]

Enkrich, Christian

Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
[Crossref] [PubMed]

Falcone, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding Left- or Right-Handed Metamaterials by Stacked Cut-Off Metallic Hole Arrays,” accepted in the IEEE Trans. Antennas Propag., Special Issue in honor of Prof. L. B. Felsen, (2007).

Fan, Wenjun

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

Foteinopoulou, Stavroula

Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847–848, (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

Genet, C.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

Ghaemi, H.

T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
[Crossref]

Goldsmith, P.F.

P.F. Goldsmith, Quasioptical Systems - Gaussian Beam, Quasioptical Propagation, and Applications, IEEE Press, (1998).

Gómez-Medina, R.

F. J.García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72,016608-1-4 (2005).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084, (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett 76,4773–4776, (1996).
[Crossref] [PubMed]

Joannopoulos, J. D.

Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68,045115-1-15 (2003).
[Crossref]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett 58,2486–2489, (1987).
[Crossref] [PubMed]

Johnson, Steven G.

Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68,045115-1-15 (2003).
[Crossref]

Kogelnik, H.

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329, (1966).
[Crossref]

Laso, M. A. G.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
[Crossref]

Li, S. Q.

V. Lomakin, N.W. Chen, S. Q. Li, and E. Michielssen, “Enhanced transmission through two-period arrays of sub-wavelength holes,” IEEE Microwave Wirel. Compon. Lett 14,355–357, (2004)
[Crossref]

Li, S.Q.

V. Lomakin, S.Q. Li, and E. Michielssen, “Manipulation of stop-band gaps of periodically perforated conducting plates,” IEEE Microwave Wirel. Compon. Lett 15,919–921, (2005).
[Crossref]

Li, T.

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329, (1966).
[Crossref]

Linden, Stefan

Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
[Crossref] [PubMed]

Lomakin, V.

V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag 54,970–984, (2006).
[Crossref]

V. Lomakin, S.Q. Li, and E. Michielssen, “Manipulation of stop-band gaps of periodically perforated conducting plates,” IEEE Microwave Wirel. Compon. Lett 15,919–921, (2005).
[Crossref]

V. Lomakin, N.W. Chen, S. Q. Li, and E. Michielssen, “Enhanced transmission through two-period arrays of sub-wavelength holes,” IEEE Microwave Wirel. Compon. Lett 14,355–357, (2004)
[Crossref]

Lomakin, Vitaliy

Vitaliy Lomakin and Eric Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71,235117-1-10 (2005).
[Crossref]

Lopetegi, T.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

Luo, Chiyan

Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68,045115-1-15 (2003).
[Crossref]

Malloy, K. J.

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

Marqués, R.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

Martín, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

Martín-Moreno, L.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847–848, (2004).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

Michielssen, E.

V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag 54,970–984, (2006).
[Crossref]

V. Lomakin, S.Q. Li, and E. Michielssen, “Manipulation of stop-band gaps of periodically perforated conducting plates,” IEEE Microwave Wirel. Compon. Lett 15,919–921, (2005).
[Crossref]

V. Lomakin, N.W. Chen, S. Q. Li, and E. Michielssen, “Enhanced transmission through two-period arrays of sub-wavelength holes,” IEEE Microwave Wirel. Compon. Lett 14,355–357, (2004)
[Crossref]

Michielssen, Eric

Vitaliy Lomakin and Eric Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71,235117-1-10 (2005).
[Crossref]

Navarro, M.

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding Left- or Right-Handed Metamaterials by Stacked Cut-Off Metallic Hole Arrays,” accepted in the IEEE Trans. Antennas Propag., Special Issue in honor of Prof. L. B. Felsen, (2007).

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
[Crossref] [PubMed]

Notomi, Masaya

Masaya Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron 34,133–143, (2002).
[Crossref]

Osgood, R. M.

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

Ozbay, Ekmel

Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
[Crossref] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
[Crossref] [PubMed]

Panoiu, N. C.

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847–848, (2004).
[Crossref] [PubMed]

Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68,045115-1-15 (2003).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett 85,3966–3969, (2000).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084, (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett 76,4773–4776, (1996).
[Crossref] [PubMed]

Przybilla, F.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

Qiu, Min

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084, (1999).
[Crossref]

Ruan, Zhichao

Sáenz, J. J.

F. J.García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72,016608-1-4 (2005).
[Crossref]

Sarrazin, M.

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67,085415, (2003).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
[Crossref] [PubMed]

Sorolla, M.

M. Beruete, M. Sorolla, and I. Campillo, “Inhibiting Negative Index of Refraction by a Band Gap of Stacked Cut-off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 17,16–18, (2007).
[Crossref]

M. Beruete, M. Sorolla, and I. Campillo,“Left-Handed Extraordinary Optical Transmission through Photonic Crystal Subwavelength Hole Arrays,” Opt. Express 14,5445–5455, (2006).
[Crossref] [PubMed]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the Transmission in Cut-Off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 15,116–118, (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding Left- or Right-Handed Metamaterials by Stacked Cut-Off Metallic Hole Arrays,” accepted in the IEEE Trans. Antennas Propag., Special Issue in honor of Prof. L. B. Felsen, (2007).

Soukoulis, Costas M.

Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
[Crossref] [PubMed]

Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084, (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett 76,4773–4776, (1996).
[Crossref] [PubMed]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
[Crossref]

Veselago, V.G.

V.G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Soviet Physics Uspekhi 10,509–514, (1968).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
[Crossref] [PubMed]

Vigneron, J. P.

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67,085415, (2003).
[Crossref]

Vigoureux, J. M.

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67,085415, (2003).
[Crossref]

Wegener, Martin

Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
[Crossref] [PubMed]

Wolf, P. A.

T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett 58,2059–2062, (1987).
[Crossref] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett 76,4773–4776, (1996).
[Crossref] [PubMed]

Zhang, Shuang

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14,6778–6787, (2006).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

IEEE Microwave Wirel. Compon. Lett (4)

M. Beruete, M. Sorolla, and I. Campillo, “Inhibiting Negative Index of Refraction by a Band Gap of Stacked Cut-off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 17,16–18, (2007).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the Transmission in Cut-Off Metallic Hole Arrays,” IEEE Microwave Wirel. Compon. Lett 15,116–118, (2005).
[Crossref]

V. Lomakin, N.W. Chen, S. Q. Li, and E. Michielssen, “Enhanced transmission through two-period arrays of sub-wavelength holes,” IEEE Microwave Wirel. Compon. Lett 14,355–357, (2004)
[Crossref]

V. Lomakin, S.Q. Li, and E. Michielssen, “Manipulation of stop-band gaps of periodically perforated conducting plates,” IEEE Microwave Wirel. Compon. Lett 15,919–921, (2005).
[Crossref]

IEEE Trans. Antennas Propag (2)

V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag 54,970–984, (2006).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, “Enhanced Millimeter Wave Transmission Through Quasioptical Subwavelength Perforated Plates,” IEEE Trans. Antennas Propag 53,1897–1903, (2005).
[Crossref]

IEEE Trans. Microwave Theory Technol (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol 47,2075–2084, (1999).
[Crossref]

Nature (2)

Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and Costas M. Soukoulis, “Electromagnetic waves - Negative refraction by photonic crystals,” Nature 423,604–605, (2003).
[Crossref] [PubMed]

T.W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391,667–669, (1998).
[Crossref]

Nature Physics (1)

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Physics 2,120–123, (2006).
[Crossref]

Opt. Express (3)

Opt. Quantum Electron (1)

Masaya Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron 34,133–143, (2002).
[Crossref]

Optics Lett (1)

M. Beruete, M. Sorolla, I. Campillo, J.S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimetre wave transmission through subwavelength hole arrays,” Optics Lett 29,2500–2502, (2004).
[Crossref]

Phys. Rev. B (3)

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67,085415, (2003).
[Crossref]

Vitaliy Lomakin and Eric Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71,235117-1-10 (2005).
[Crossref]

Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68,045115-1-15 (2003).
[Crossref]

Phys. Rev. E (1)

F. J.García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E 72,016608-1-4 (2005).
[Crossref]

Phys. Rev. Lett (8)

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett 93,197401-1-4, (2004).
[Crossref]

J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett 85,3966–3969, (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett 84,4184–4187, (2000).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett 76,4773–4776, (1996).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett 86,1114–1117, (2001).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett 58,2059–2062, (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett 58,2486–2489, (1987).
[Crossref] [PubMed]

Shuang Zhang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, –Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,– Phys. Rev. Lett 95,137404-1-4 (2005).
[Crossref]

Proc. IEEE (1)

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54,1312–1329, (1966).
[Crossref]

Science (2)

Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312,892–894, (2006).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305,847–848, (2004).
[Crossref] [PubMed]

Soviet Physics Uspekhi (1)

V.G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Soviet Physics Uspekhi 10,509–514, (1968).
[Crossref]

Other (2)

P.F. Goldsmith, Quasioptical Systems - Gaussian Beam, Quasioptical Propagation, and Applications, IEEE Press, (1998).

M. Beruete, I. Campillo, M. Navarro, F. Falcone, and M. Sorolla, “Molding Left- or Right-Handed Metamaterials by Stacked Cut-Off Metallic Hole Arrays,” accepted in the IEEE Trans. Antennas Propag., Special Issue in honor of Prof. L. B. Felsen, (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Photographs of the prototypes. (a) Rectangular periodicity subwavelength hole array with parameters dx = 1.5 mm, dy = 4 mm, hole diameter a = 1.2 mm, metallization thickness (copper) t = 35 microns, dielectric thickness h = 0.49 mm and dielectric permittivity ε = 2.43. Squared periodicity subwavelength hole array with hole diameter a = 2 mm (b) and a = 2.5 mm (c), the rest of parameters being: dx = dy = 5 mm, metal thickness (aluminum) t = 0.5 mm. (d) Schematic of the stacked hole array with parameters dy = 3.4 mm, dz = 0.525 mm and the rest as in (a).

Fig. 2.
Fig. 2.

(a) Simulated transmission coefficient magnitude comparing two rectangular periodicity infinite hole arrays with parameters as in Fig. 1(a), one immersed in air (blue curve) and the other one sandwiched between two dielectric slabs of thickness h = 0.49 mm and relative dielectric permittivity εr = 2.43 (cyan curve). Green and magenta curves correspond to square periodicity infinite hole arrays embedded in air shown in Fig. 1(b) and (c) respectively. (b) Measured transmission coefficient magnitude for single plate subwavelength hole arrays prototypes. Solid cyan curve corresponds to the parallel polarization excitation (copolar) of the rectangular periodicity hole array shown in Fig. 1(a) and sandwiched between two identical dielectric slabs of thickness h = 0.49 mm and dielectric permittivity εr = 2.43. Dashed cyan curve is for the orthogonal polarization (crosspolar). Green and magenta curves correspond to square periodicity hole arrays embedded in air shown in Fig. 1(b) and (c) respectively.

Fig. 3.
Fig. 3.

Experimental quasi-optical bench set-up (QO bench). The transmitting and receiving corrugated horn antennas, the focusing mirrors and the sample positioning system are displayed. The propagating Gaussian beam contour is highlighted in blue.

Fig. 4.
Fig. 4.

(a) Dispersion diagram particularized to the first band of the stacked hole array separated by air slabs (blue) and by εr = 2.43 dielectric slabs (green). (b) Experimental transmission coefficient magnitude of stacked hole arrays. Solid lines correspond to copolar excitation of the rectangular periodic hole array on the dielectric slab structure, i.e. E-field in the direction of the large periodicity and dashed lines to the orthogonal polarization. (c) and (d) Phase response in and out of the LHM band respectively. In (b), (c) and (d) black is for two plates, red for three plates and blue for four plates

Metrics