Abstract

We present a study of the 3-dimensional (3D) propagation of electrical waves in the heart wall using Laminar Optical Tomography (LOT). Optical imaging contrast is provided by a voltage sensitive dye whose fluorescence reports changes in membrane potential. We examined the transmural propagation dynamics of electrical waves in the right ventricle of Langendorf perfused rat hearts, initiated either by endo-cardial or epi-cardial pacing. 3D images were acquired at an effective frame rate of 667Hz. We compare our experimental results to a mathematical model of electrical transmural propagation. We demonstrate that LOT can clearly resolve the direction of propagation of electrical waves within the cardiac wall, and that the dynamics observed agree well with the model of electrical propagation in rat ventricular tissue.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Gray, A. M. Pertsov, and J. Jalife, "Spatial and temporal organization during cardiac fibrillation," Nature 392, 75-78 (1998).
    [CrossRef] [PubMed]
  2. J. Kalifa, M. Klos, S. Zlochiver, S. Mironov, K. Tanaka, N. Ulahannan, M. Yamazaki, J. Jalife, and O. Berenfeld, "Endoscopic fluorescence mapping of the left atrium: A novel experimental approach for high resolution endocardial mapping in the intact heart," Heart Rhythm. 4, 916-924 (2007).
    [CrossRef] [PubMed]
  3. I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, "Changes in fluorescence, turbidity and birefringence associated with nerve excitation," Proc. Natl. Acad. Sci. 61, 883-888 (1968).
    [CrossRef] [PubMed]
  4. L. M. Loew, S. Scully, L. Simpson, and A. S. Waggoner, "Evidence for a charge-shift electrochromic mechanism in a probe of membrane potential," Nature. 281, 497-499 (1979).
    [CrossRef] [PubMed]
  5. E. Fluhler, V. G. Burnham and L. M. Loew, "Spectra, membrane binding and potentiometric responses of new charge shift probes," Biochemistry. 24, 5749-5755 (1985).
    [CrossRef] [PubMed]
  6. D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, "Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes," Neuron. 24, 791-802 (1999).
    [CrossRef]
  7. A. Matiukas, B. G. Mitrea, A. M. Pertsov, J. P. Wuskell, M. D. Wei, J. Watras, A. C. Millard, and L. M. Loew, "New near-infrared optical probes of cardiac electrical activity," Am. J. Physiol. Heart Circ. Physiol. 290, H2633-H2643 (2006).
    [CrossRef] [PubMed]
  8. D. S. Rosenbaum and J. Jalife, Optical mapping of cardiac excitation and arrhythmias, (Armonk, N Y, Futura Publishing Company, Inc. 2001).
  9. I. R. Efimov, V. P. Nikolski, and G. Salama, "Optical imaging of the heart," Circ. Res. 95, 21-33 (2004).
    [CrossRef] [PubMed]
  10. W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov and J. Jalife, "Visualizing excitation waves in cardiac muscle using transillumination," Biophys. J. 80, 516-530 (2001).
    [CrossRef] [PubMed]
  11. S. D. Girouard, K. R. Laurita and D. S. Rosenbaum, "Unique properties of cardiac action potentials recorded with voltage-sensitive dyes," J. Cardiovasc. Electrophysiol. 7, 1024-1038 (1996).
    [CrossRef] [PubMed]
  12. L. Ding, R. Splinter, and S. B. Knisley, "Quantifying spatial localization of optical mapping using Monte Carlo simulations," IEEE Trans. Biomed. Eng. 48, 1098-1107 (2001).
    [CrossRef] [PubMed]
  13. D. L. Janks and B. J. Roth, "Averaging over depth during optical mapping of unipolar stimulation," IEEE Trans. Biomed. Eng. 49, 1051-1054 (2002).
    [CrossRef] [PubMed]
  14. T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
    [CrossRef]
  15. C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin and A. M. Pertsov, "Optical action potential upstroke morphology reveals near-surface transmural propagation direction," Circ. Res. 97, 277-284 (2005).
    [CrossRef] [PubMed]
  16. D. Streeter, Handbook of Physiology, (Bethesda, MD, American Physiological Society, 1979).
  17. O. Bernus, M. Wellner, and A. M. Pertsov, "Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves," Phys. Rev. E 70, 061913 (2004).
    [CrossRef]
  18. O. Berenfeld and A. M. Pertsov, "Dynamics of intramural scroll waves in three-dimensional continuous myocardium with rotational anisotropym," J. Theor. Biol. 199, 383-394 (1999).
    [CrossRef] [PubMed]
  19. O. Bernus, K. S. Mukund, and A. M. Pertsov, "Detection of intramyocardial scroll waves using absorptive transillumination imaging," J. Biomed. Opt. 12, 14035 (2007).
    [CrossRef]
  20. A. M. Pertsov, "Scroll waves in three-dimensional cardiac muscle," in Cardiac Electrophysiology: from cell to bedside, D. P. Zipes, and J. Jalife, eds., (Philadelphia, PA, Saunders, 2000), pp. 336-344.
  21. E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar Optical Tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004).
    [CrossRef] [PubMed]
  22. E. M. C. Hillman, A. Devor, M. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, "Depth-resolved Optical Imaging and Microscopy of Vascular Compartment Dynamics during Somatosensory Stimulation," Neuroimage. 35, 89-104 (2007).
    [CrossRef] [PubMed]
  23. E. M. C. Hillman, A. Devor, A. K. Dunn, and D. A. Boas, "Laminar optical tomography: high-resolution 3D functional imaging of superficial tissues," Proc. SPIE 6143, 61431M (2006).
    [CrossRef]
  24. A. Nygren, C. Kondo, R. B. Clark, and W. R. Giles, "Voltage-sensitive dye mapping in Langendorff-perfused rat hearts," Am. J. Physiol. Heart Circ. Physiol. 284, H892-H902 (2003).
  25. S. V. Pandit, R. B. Clark, W. R. Giles, and S. S. Demir, "A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes," Biophys. J. 81, 3029-3051 (2001).
    [CrossRef] [PubMed]
  26. H. D. Himel and S. B. Knisley, "Comparison of optical and electrical mapping of fibrillation," Physiol. Meas. 28, 707-719 (2007).
    [CrossRef] [PubMed]
  27. A. K. Dunn and D. A. Boas, "Transport-based image reconstruction in turbid media with small source-detector separations," Opt. Lett. 25, 1777-1779 (2000).
    [CrossRef]
  28. V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757 -761 (2002).
    [CrossRef] [PubMed]
  29. M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).
    [CrossRef] [PubMed]
  30. O. Bernus, M. Wellner, S. F. Mironov, and A. M. Pertsov, "Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods," Phys. Med. Biol. 50, 215-229 (2005).
    [CrossRef] [PubMed]
  31. C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, "Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns," Biophys. J. 85, 2673-2683 (2003).
    [CrossRef] [PubMed]
  32. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Metab. 23, 911-924 (2003).
    [CrossRef] [PubMed]
  33. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, "Volumetric diffuse optical tomography of brain activity," Opt. Lett. 28, 2061-2063 (2003).
    [CrossRef] [PubMed]

2007

J. Kalifa, M. Klos, S. Zlochiver, S. Mironov, K. Tanaka, N. Ulahannan, M. Yamazaki, J. Jalife, and O. Berenfeld, "Endoscopic fluorescence mapping of the left atrium: A novel experimental approach for high resolution endocardial mapping in the intact heart," Heart Rhythm. 4, 916-924 (2007).
[CrossRef] [PubMed]

O. Bernus, K. S. Mukund, and A. M. Pertsov, "Detection of intramyocardial scroll waves using absorptive transillumination imaging," J. Biomed. Opt. 12, 14035 (2007).
[CrossRef]

E. M. C. Hillman, A. Devor, M. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, "Depth-resolved Optical Imaging and Microscopy of Vascular Compartment Dynamics during Somatosensory Stimulation," Neuroimage. 35, 89-104 (2007).
[CrossRef] [PubMed]

H. D. Himel and S. B. Knisley, "Comparison of optical and electrical mapping of fibrillation," Physiol. Meas. 28, 707-719 (2007).
[CrossRef] [PubMed]

2006

E. M. C. Hillman, A. Devor, A. K. Dunn, and D. A. Boas, "Laminar optical tomography: high-resolution 3D functional imaging of superficial tissues," Proc. SPIE 6143, 61431M (2006).
[CrossRef]

A. Matiukas, B. G. Mitrea, A. M. Pertsov, J. P. Wuskell, M. D. Wei, J. Watras, A. C. Millard, and L. M. Loew, "New near-infrared optical probes of cardiac electrical activity," Am. J. Physiol. Heart Circ. Physiol. 290, H2633-H2643 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
[CrossRef]

2005

C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin and A. M. Pertsov, "Optical action potential upstroke morphology reveals near-surface transmural propagation direction," Circ. Res. 97, 277-284 (2005).
[CrossRef] [PubMed]

O. Bernus, M. Wellner, S. F. Mironov, and A. M. Pertsov, "Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods," Phys. Med. Biol. 50, 215-229 (2005).
[CrossRef] [PubMed]

2004

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar Optical Tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004).
[CrossRef] [PubMed]

O. Bernus, M. Wellner, and A. M. Pertsov, "Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves," Phys. Rev. E 70, 061913 (2004).
[CrossRef]

I. R. Efimov, V. P. Nikolski, and G. Salama, "Optical imaging of the heart," Circ. Res. 95, 21-33 (2004).
[CrossRef] [PubMed]

2003

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, "Volumetric diffuse optical tomography of brain activity," Opt. Lett. 28, 2061-2063 (2003).
[CrossRef] [PubMed]

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, "Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns," Biophys. J. 85, 2673-2683 (2003).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Metab. 23, 911-924 (2003).
[CrossRef] [PubMed]

A. Nygren, C. Kondo, R. B. Clark, and W. R. Giles, "Voltage-sensitive dye mapping in Langendorff-perfused rat hearts," Am. J. Physiol. Heart Circ. Physiol. 284, H892-H902 (2003).

2002

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757 -761 (2002).
[CrossRef] [PubMed]

D. L. Janks and B. J. Roth, "Averaging over depth during optical mapping of unipolar stimulation," IEEE Trans. Biomed. Eng. 49, 1051-1054 (2002).
[CrossRef] [PubMed]

2001

L. Ding, R. Splinter, and S. B. Knisley, "Quantifying spatial localization of optical mapping using Monte Carlo simulations," IEEE Trans. Biomed. Eng. 48, 1098-1107 (2001).
[CrossRef] [PubMed]

W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov and J. Jalife, "Visualizing excitation waves in cardiac muscle using transillumination," Biophys. J. 80, 516-530 (2001).
[CrossRef] [PubMed]

S. V. Pandit, R. B. Clark, W. R. Giles, and S. S. Demir, "A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes," Biophys. J. 81, 3029-3051 (2001).
[CrossRef] [PubMed]

2000

1999

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, "Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes," Neuron. 24, 791-802 (1999).
[CrossRef]

O. Berenfeld and A. M. Pertsov, "Dynamics of intramural scroll waves in three-dimensional continuous myocardium with rotational anisotropym," J. Theor. Biol. 199, 383-394 (1999).
[CrossRef] [PubMed]

1998

R. A. Gray, A. M. Pertsov, and J. Jalife, "Spatial and temporal organization during cardiac fibrillation," Nature 392, 75-78 (1998).
[CrossRef] [PubMed]

1996

S. D. Girouard, K. R. Laurita and D. S. Rosenbaum, "Unique properties of cardiac action potentials recorded with voltage-sensitive dyes," J. Cardiovasc. Electrophysiol. 7, 1024-1038 (1996).
[CrossRef] [PubMed]

1994

1985

E. Fluhler, V. G. Burnham and L. M. Loew, "Spectra, membrane binding and potentiometric responses of new charge shift probes," Biochemistry. 24, 5749-5755 (1985).
[CrossRef] [PubMed]

1979

L. M. Loew, S. Scully, L. Simpson, and A. S. Waggoner, "Evidence for a charge-shift electrochromic mechanism in a probe of membrane potential," Nature. 281, 497-499 (1979).
[CrossRef] [PubMed]

1968

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, "Changes in fluorescence, turbidity and birefringence associated with nerve excitation," Proc. Natl. Acad. Sci. 61, 883-888 (1968).
[CrossRef] [PubMed]

Arieli, A.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, "Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes," Neuron. 24, 791-802 (1999).
[CrossRef]

Bacskai, B. J.

E. M. C. Hillman, A. Devor, M. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, "Depth-resolved Optical Imaging and Microscopy of Vascular Compartment Dynamics during Somatosensory Stimulation," Neuroimage. 35, 89-104 (2007).
[CrossRef] [PubMed]

Baxter, W.

W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov and J. Jalife, "Visualizing excitation waves in cardiac muscle using transillumination," Biophys. J. 80, 516-530 (2001).
[CrossRef] [PubMed]

Berenfeld, O.

J. Kalifa, M. Klos, S. Zlochiver, S. Mironov, K. Tanaka, N. Ulahannan, M. Yamazaki, J. Jalife, and O. Berenfeld, "Endoscopic fluorescence mapping of the left atrium: A novel experimental approach for high resolution endocardial mapping in the intact heart," Heart Rhythm. 4, 916-924 (2007).
[CrossRef] [PubMed]

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, "Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns," Biophys. J. 85, 2673-2683 (2003).
[CrossRef] [PubMed]

O. Berenfeld and A. M. Pertsov, "Dynamics of intramural scroll waves in three-dimensional continuous myocardium with rotational anisotropym," J. Theor. Biol. 199, 383-394 (1999).
[CrossRef] [PubMed]

Bernus, O.

O. Bernus, K. S. Mukund, and A. M. Pertsov, "Detection of intramyocardial scroll waves using absorptive transillumination imaging," J. Biomed. Opt. 12, 14035 (2007).
[CrossRef]

O. Bernus, M. Wellner, S. F. Mironov, and A. M. Pertsov, "Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods," Phys. Med. Biol. 50, 215-229 (2005).
[CrossRef] [PubMed]

O. Bernus, M. Wellner, and A. M. Pertsov, "Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves," Phys. Rev. E 70, 061913 (2004).
[CrossRef]

Boas, D. A.

E. M. C. Hillman, A. Devor, M. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, "Depth-resolved Optical Imaging and Microscopy of Vascular Compartment Dynamics during Somatosensory Stimulation," Neuroimage. 35, 89-104 (2007).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
[CrossRef]

E. M. C. Hillman, A. Devor, A. K. Dunn, and D. A. Boas, "Laminar optical tomography: high-resolution 3D functional imaging of superficial tissues," Proc. SPIE 6143, 61431M (2006).
[CrossRef]

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar Optical Tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004).
[CrossRef] [PubMed]

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, "Volumetric diffuse optical tomography of brain activity," Opt. Lett. 28, 2061-2063 (2003).
[CrossRef] [PubMed]

A. K. Dunn and D. A. Boas, "Transport-based image reconstruction in turbid media with small source-detector separations," Opt. Lett. 25, 1777-1779 (2000).
[CrossRef]

Bouchard, M.

E. M. C. Hillman, A. Devor, M. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, "Depth-resolved Optical Imaging and Microscopy of Vascular Compartment Dynamics during Somatosensory Stimulation," Neuroimage. 35, 89-104 (2007).
[CrossRef] [PubMed]

Bremer, C.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757 -761 (2002).
[CrossRef] [PubMed]

Burnham, V. G.

E. Fluhler, V. G. Burnham and L. M. Loew, "Spectra, membrane binding and potentiometric responses of new charge shift probes," Biochemistry. 24, 5749-5755 (1985).
[CrossRef] [PubMed]

Carnay, L.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, "Changes in fluorescence, turbidity and birefringence associated with nerve excitation," Proc. Natl. Acad. Sci. 61, 883-888 (1968).
[CrossRef] [PubMed]

Cheung, C.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Metab. 23, 911-924 (2003).
[CrossRef] [PubMed]

Clark, R. B.

A. Nygren, C. Kondo, R. B. Clark, and W. R. Giles, "Voltage-sensitive dye mapping in Langendorff-perfused rat hearts," Am. J. Physiol. Heart Circ. Physiol. 284, H892-H902 (2003).

S. V. Pandit, R. B. Clark, W. R. Giles, and S. S. Demir, "A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes," Biophys. J. 81, 3029-3051 (2001).
[CrossRef] [PubMed]

Culver, J. P.

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, "Volumetric diffuse optical tomography of brain activity," Opt. Lett. 28, 2061-2063 (2003).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Metab. 23, 911-924 (2003).
[CrossRef] [PubMed]

Dale, A. M.

E. M. C. Hillman, A. Devor, M. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, "Depth-resolved Optical Imaging and Microscopy of Vascular Compartment Dynamics during Somatosensory Stimulation," Neuroimage. 35, 89-104 (2007).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
[CrossRef]

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar Optical Tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004).
[CrossRef] [PubMed]

Demir, S. S.

S. V. Pandit, R. B. Clark, W. R. Giles, and S. S. Demir, "A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes," Biophys. J. 81, 3029-3051 (2001).
[CrossRef] [PubMed]

Devor, A.

E. M. C. Hillman, A. Devor, M. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, "Depth-resolved Optical Imaging and Microscopy of Vascular Compartment Dynamics during Somatosensory Stimulation," Neuroimage. 35, 89-104 (2007).
[CrossRef] [PubMed]

E. M. C. Hillman, A. Devor, A. K. Dunn, and D. A. Boas, "Laminar optical tomography: high-resolution 3D functional imaging of superficial tissues," Proc. SPIE 6143, 61431M (2006).
[CrossRef]

Ding, L.

L. Ding, R. Splinter, and S. B. Knisley, "Quantifying spatial localization of optical mapping using Monte Carlo simulations," IEEE Trans. Biomed. Eng. 48, 1098-1107 (2001).
[CrossRef] [PubMed]

Dunn, A. K.

E. M. C. Hillman, A. Devor, M. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, "Depth-resolved Optical Imaging and Microscopy of Vascular Compartment Dynamics during Somatosensory Stimulation," Neuroimage. 35, 89-104 (2007).
[CrossRef] [PubMed]

E. M. C. Hillman, A. Devor, A. K. Dunn, and D. A. Boas, "Laminar optical tomography: high-resolution 3D functional imaging of superficial tissues," Proc. SPIE 6143, 61431M (2006).
[CrossRef]

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar Optical Tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004).
[CrossRef] [PubMed]

A. K. Dunn and D. A. Boas, "Transport-based image reconstruction in turbid media with small source-detector separations," Opt. Lett. 25, 1777-1779 (2000).
[CrossRef]

Durduran, T.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Metab. 23, 911-924 (2003).
[CrossRef] [PubMed]

Efimov, I. R.

I. R. Efimov, V. P. Nikolski, and G. Salama, "Optical imaging of the heart," Circ. Res. 95, 21-33 (2004).
[CrossRef] [PubMed]

Fluhler, E.

E. Fluhler, V. G. Burnham and L. M. Loew, "Spectra, membrane binding and potentiometric responses of new charge shift probes," Biochemistry. 24, 5749-5755 (1985).
[CrossRef] [PubMed]

Franceschini, M. A.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
[CrossRef]

Furuya, D.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Metab. 23, 911-924 (2003).
[CrossRef] [PubMed]

Giles, W. R.

A. Nygren, C. Kondo, R. B. Clark, and W. R. Giles, "Voltage-sensitive dye mapping in Langendorff-perfused rat hearts," Am. J. Physiol. Heart Circ. Physiol. 284, H892-H902 (2003).

S. V. Pandit, R. B. Clark, W. R. Giles, and S. S. Demir, "A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes," Biophys. J. 81, 3029-3051 (2001).
[CrossRef] [PubMed]

Girouard, S. D.

S. D. Girouard, K. R. Laurita and D. S. Rosenbaum, "Unique properties of cardiac action potentials recorded with voltage-sensitive dyes," J. Cardiovasc. Electrophysiol. 7, 1024-1038 (1996).
[CrossRef] [PubMed]

Glaser, D. E.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, "Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes," Neuron. 24, 791-802 (1999).
[CrossRef]

Gray, R. A.

R. A. Gray, A. M. Pertsov, and J. Jalife, "Spatial and temporal organization during cardiac fibrillation," Nature 392, 75-78 (1998).
[CrossRef] [PubMed]

Greenberg, J. H.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Metab. 23, 911-924 (2003).
[CrossRef] [PubMed]

Grinvald, A.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, "Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes," Neuron. 24, 791-802 (1999).
[CrossRef]

Hildesheim, R.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, "Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes," Neuron. 24, 791-802 (1999).
[CrossRef]

Hillman, E. M. C.

E. M. C. Hillman, A. Devor, M. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, "Depth-resolved Optical Imaging and Microscopy of Vascular Compartment Dynamics during Somatosensory Stimulation," Neuroimage. 35, 89-104 (2007).
[CrossRef] [PubMed]

E. M. C. Hillman, A. Devor, A. K. Dunn, and D. A. Boas, "Laminar optical tomography: high-resolution 3D functional imaging of superficial tissues," Proc. SPIE 6143, 61431M (2006).
[CrossRef]

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar Optical Tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004).
[CrossRef] [PubMed]

Himel, H. D.

H. D. Himel and S. B. Knisley, "Comparison of optical and electrical mapping of fibrillation," Physiol. Meas. 28, 707-719 (2007).
[CrossRef] [PubMed]

Hoge, R. D.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
[CrossRef]

Huppert, T. J.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
[CrossRef]

Hyatt, C. J.

C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin and A. M. Pertsov, "Optical action potential upstroke morphology reveals near-surface transmural propagation direction," Circ. Res. 97, 277-284 (2005).
[CrossRef] [PubMed]

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, "Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns," Biophys. J. 85, 2673-2683 (2003).
[CrossRef] [PubMed]

Jalife, J.

J. Kalifa, M. Klos, S. Zlochiver, S. Mironov, K. Tanaka, N. Ulahannan, M. Yamazaki, J. Jalife, and O. Berenfeld, "Endoscopic fluorescence mapping of the left atrium: A novel experimental approach for high resolution endocardial mapping in the intact heart," Heart Rhythm. 4, 916-924 (2007).
[CrossRef] [PubMed]

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, "Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns," Biophys. J. 85, 2673-2683 (2003).
[CrossRef] [PubMed]

W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov and J. Jalife, "Visualizing excitation waves in cardiac muscle using transillumination," Biophys. J. 80, 516-530 (2001).
[CrossRef] [PubMed]

R. A. Gray, A. M. Pertsov, and J. Jalife, "Spatial and temporal organization during cardiac fibrillation," Nature 392, 75-78 (1998).
[CrossRef] [PubMed]

Janks, D. L.

D. L. Janks and B. J. Roth, "Averaging over depth during optical mapping of unipolar stimulation," IEEE Trans. Biomed. Eng. 49, 1051-1054 (2002).
[CrossRef] [PubMed]

Kalifa, J.

J. Kalifa, M. Klos, S. Zlochiver, S. Mironov, K. Tanaka, N. Ulahannan, M. Yamazaki, J. Jalife, and O. Berenfeld, "Endoscopic fluorescence mapping of the left atrium: A novel experimental approach for high resolution endocardial mapping in the intact heart," Heart Rhythm. 4, 916-924 (2007).
[CrossRef] [PubMed]

Kenet, T.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, "Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes," Neuron. 24, 791-802 (1999).
[CrossRef]

Klos, M.

J. Kalifa, M. Klos, S. Zlochiver, S. Mironov, K. Tanaka, N. Ulahannan, M. Yamazaki, J. Jalife, and O. Berenfeld, "Endoscopic fluorescence mapping of the left atrium: A novel experimental approach for high resolution endocardial mapping in the intact heart," Heart Rhythm. 4, 916-924 (2007).
[CrossRef] [PubMed]

Knisley, S. B.

H. D. Himel and S. B. Knisley, "Comparison of optical and electrical mapping of fibrillation," Physiol. Meas. 28, 707-719 (2007).
[CrossRef] [PubMed]

L. Ding, R. Splinter, and S. B. Knisley, "Quantifying spatial localization of optical mapping using Monte Carlo simulations," IEEE Trans. Biomed. Eng. 48, 1098-1107 (2001).
[CrossRef] [PubMed]

Kondo, C.

A. Nygren, C. Kondo, R. B. Clark, and W. R. Giles, "Voltage-sensitive dye mapping in Langendorff-perfused rat hearts," Am. J. Physiol. Heart Circ. Physiol. 284, H892-H902 (2003).

Krauss, G. W.

E. M. C. Hillman, A. Devor, M. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, "Depth-resolved Optical Imaging and Microscopy of Vascular Compartment Dynamics during Somatosensory Stimulation," Neuroimage. 35, 89-104 (2007).
[CrossRef] [PubMed]

Laurita, K. R.

S. D. Girouard, K. R. Laurita and D. S. Rosenbaum, "Unique properties of cardiac action potentials recorded with voltage-sensitive dyes," J. Cardiovasc. Electrophysiol. 7, 1024-1038 (1996).
[CrossRef] [PubMed]

Loew, L. M.

A. Matiukas, B. G. Mitrea, A. M. Pertsov, J. P. Wuskell, M. D. Wei, J. Watras, A. C. Millard, and L. M. Loew, "New near-infrared optical probes of cardiac electrical activity," Am. J. Physiol. Heart Circ. Physiol. 290, H2633-H2643 (2006).
[CrossRef] [PubMed]

E. Fluhler, V. G. Burnham and L. M. Loew, "Spectra, membrane binding and potentiometric responses of new charge shift probes," Biochemistry. 24, 5749-5755 (1985).
[CrossRef] [PubMed]

L. M. Loew, S. Scully, L. Simpson, and A. S. Waggoner, "Evidence for a charge-shift electrochromic mechanism in a probe of membrane potential," Nature. 281, 497-499 (1979).
[CrossRef] [PubMed]

Matiukas, A.

A. Matiukas, B. G. Mitrea, A. M. Pertsov, J. P. Wuskell, M. D. Wei, J. Watras, A. C. Millard, and L. M. Loew, "New near-infrared optical probes of cardiac electrical activity," Am. J. Physiol. Heart Circ. Physiol. 290, H2633-H2643 (2006).
[CrossRef] [PubMed]

Millard, A. C.

A. Matiukas, B. G. Mitrea, A. M. Pertsov, J. P. Wuskell, M. D. Wei, J. Watras, A. C. Millard, and L. M. Loew, "New near-infrared optical probes of cardiac electrical activity," Am. J. Physiol. Heart Circ. Physiol. 290, H2633-H2643 (2006).
[CrossRef] [PubMed]

Mironov, S.

J. Kalifa, M. Klos, S. Zlochiver, S. Mironov, K. Tanaka, N. Ulahannan, M. Yamazaki, J. Jalife, and O. Berenfeld, "Endoscopic fluorescence mapping of the left atrium: A novel experimental approach for high resolution endocardial mapping in the intact heart," Heart Rhythm. 4, 916-924 (2007).
[CrossRef] [PubMed]

Mironov, S. F.

C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin and A. M. Pertsov, "Optical action potential upstroke morphology reveals near-surface transmural propagation direction," Circ. Res. 97, 277-284 (2005).
[CrossRef] [PubMed]

O. Bernus, M. Wellner, S. F. Mironov, and A. M. Pertsov, "Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods," Phys. Med. Biol. 50, 215-229 (2005).
[CrossRef] [PubMed]

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, "Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns," Biophys. J. 85, 2673-2683 (2003).
[CrossRef] [PubMed]

W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov and J. Jalife, "Visualizing excitation waves in cardiac muscle using transillumination," Biophys. J. 80, 516-530 (2001).
[CrossRef] [PubMed]

Mitrea, B. G.

A. Matiukas, B. G. Mitrea, A. M. Pertsov, J. P. Wuskell, M. D. Wei, J. Watras, A. C. Millard, and L. M. Loew, "New near-infrared optical probes of cardiac electrical activity," Am. J. Physiol. Heart Circ. Physiol. 290, H2633-H2643 (2006).
[CrossRef] [PubMed]

Mukund, K. S.

O. Bernus, K. S. Mukund, and A. M. Pertsov, "Detection of intramyocardial scroll waves using absorptive transillumination imaging," J. Biomed. Opt. 12, 14035 (2007).
[CrossRef]

Nikolski, V. P.

I. R. Efimov, V. P. Nikolski, and G. Salama, "Optical imaging of the heart," Circ. Res. 95, 21-33 (2004).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757 -761 (2002).
[CrossRef] [PubMed]

Nygren, A.

A. Nygren, C. Kondo, R. B. Clark, and W. R. Giles, "Voltage-sensitive dye mapping in Langendorff-perfused rat hearts," Am. J. Physiol. Heart Circ. Physiol. 284, H892-H902 (2003).

Pandit, S. V.

S. V. Pandit, R. B. Clark, W. R. Giles, and S. S. Demir, "A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes," Biophys. J. 81, 3029-3051 (2001).
[CrossRef] [PubMed]

Patterson, M. S.

Pertsov, A. M.

O. Bernus, K. S. Mukund, and A. M. Pertsov, "Detection of intramyocardial scroll waves using absorptive transillumination imaging," J. Biomed. Opt. 12, 14035 (2007).
[CrossRef]

A. Matiukas, B. G. Mitrea, A. M. Pertsov, J. P. Wuskell, M. D. Wei, J. Watras, A. C. Millard, and L. M. Loew, "New near-infrared optical probes of cardiac electrical activity," Am. J. Physiol. Heart Circ. Physiol. 290, H2633-H2643 (2006).
[CrossRef] [PubMed]

O. Bernus, M. Wellner, S. F. Mironov, and A. M. Pertsov, "Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods," Phys. Med. Biol. 50, 215-229 (2005).
[CrossRef] [PubMed]

C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin and A. M. Pertsov, "Optical action potential upstroke morphology reveals near-surface transmural propagation direction," Circ. Res. 97, 277-284 (2005).
[CrossRef] [PubMed]

O. Bernus, M. Wellner, and A. M. Pertsov, "Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves," Phys. Rev. E 70, 061913 (2004).
[CrossRef]

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, "Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns," Biophys. J. 85, 2673-2683 (2003).
[CrossRef] [PubMed]

W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov and J. Jalife, "Visualizing excitation waves in cardiac muscle using transillumination," Biophys. J. 80, 516-530 (2001).
[CrossRef] [PubMed]

O. Berenfeld and A. M. Pertsov, "Dynamics of intramural scroll waves in three-dimensional continuous myocardium with rotational anisotropym," J. Theor. Biol. 199, 383-394 (1999).
[CrossRef] [PubMed]

R. A. Gray, A. M. Pertsov, and J. Jalife, "Spatial and temporal organization during cardiac fibrillation," Nature 392, 75-78 (1998).
[CrossRef] [PubMed]

Pogue, B. W.

Popp, A. K.

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, "Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns," Biophys. J. 85, 2673-2683 (2003).
[CrossRef] [PubMed]

Rosenbaum, D. S.

S. D. Girouard, K. R. Laurita and D. S. Rosenbaum, "Unique properties of cardiac action potentials recorded with voltage-sensitive dyes," J. Cardiovasc. Electrophysiol. 7, 1024-1038 (1996).
[CrossRef] [PubMed]

Roth, B. J.

D. L. Janks and B. J. Roth, "Averaging over depth during optical mapping of unipolar stimulation," IEEE Trans. Biomed. Eng. 49, 1051-1054 (2002).
[CrossRef] [PubMed]

Salama, G.

I. R. Efimov, V. P. Nikolski, and G. Salama, "Optical imaging of the heart," Circ. Res. 95, 21-33 (2004).
[CrossRef] [PubMed]

Sandlin, R.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, "Changes in fluorescence, turbidity and birefringence associated with nerve excitation," Proc. Natl. Acad. Sci. 61, 883-888 (1968).
[CrossRef] [PubMed]

Scully, S.

L. M. Loew, S. Scully, L. Simpson, and A. S. Waggoner, "Evidence for a charge-shift electrochromic mechanism in a probe of membrane potential," Nature. 281, 497-499 (1979).
[CrossRef] [PubMed]

Shoham, D.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, "Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes," Neuron. 24, 791-802 (1999).
[CrossRef]

Siegel, A. M.

Simpson, L.

L. M. Loew, S. Scully, L. Simpson, and A. S. Waggoner, "Evidence for a charge-shift electrochromic mechanism in a probe of membrane potential," Nature. 281, 497-499 (1979).
[CrossRef] [PubMed]

Skoch, J.

E. M. C. Hillman, A. Devor, M. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, "Depth-resolved Optical Imaging and Microscopy of Vascular Compartment Dynamics during Somatosensory Stimulation," Neuroimage. 35, 89-104 (2007).
[CrossRef] [PubMed]

Splinter, R.

L. Ding, R. Splinter, and S. B. Knisley, "Quantifying spatial localization of optical mapping using Monte Carlo simulations," IEEE Trans. Biomed. Eng. 48, 1098-1107 (2001).
[CrossRef] [PubMed]

Stott, J. J.

Tanaka, K.

J. Kalifa, M. Klos, S. Zlochiver, S. Mironov, K. Tanaka, N. Ulahannan, M. Yamazaki, J. Jalife, and O. Berenfeld, "Endoscopic fluorescence mapping of the left atrium: A novel experimental approach for high resolution endocardial mapping in the intact heart," Heart Rhythm. 4, 916-924 (2007).
[CrossRef] [PubMed]

Tasaki, I.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, "Changes in fluorescence, turbidity and birefringence associated with nerve excitation," Proc. Natl. Acad. Sci. 61, 883-888 (1968).
[CrossRef] [PubMed]

Toledo, Y.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, "Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes," Neuron. 24, 791-802 (1999).
[CrossRef]

Tung, C.-H.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757 -761 (2002).
[CrossRef] [PubMed]

Ulahannan, N.

J. Kalifa, M. Klos, S. Zlochiver, S. Mironov, K. Tanaka, N. Ulahannan, M. Yamazaki, J. Jalife, and O. Berenfeld, "Endoscopic fluorescence mapping of the left atrium: A novel experimental approach for high resolution endocardial mapping in the intact heart," Heart Rhythm. 4, 916-924 (2007).
[CrossRef] [PubMed]

Vetter, F. J.

C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin and A. M. Pertsov, "Optical action potential upstroke morphology reveals near-surface transmural propagation direction," Circ. Res. 97, 277-284 (2005).
[CrossRef] [PubMed]

Waggoner, A. S.

L. M. Loew, S. Scully, L. Simpson, and A. S. Waggoner, "Evidence for a charge-shift electrochromic mechanism in a probe of membrane potential," Nature. 281, 497-499 (1979).
[CrossRef] [PubMed]

Watanabe, A.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, "Changes in fluorescence, turbidity and birefringence associated with nerve excitation," Proc. Natl. Acad. Sci. 61, 883-888 (1968).
[CrossRef] [PubMed]

Watras, J.

A. Matiukas, B. G. Mitrea, A. M. Pertsov, J. P. Wuskell, M. D. Wei, J. Watras, A. C. Millard, and L. M. Loew, "New near-infrared optical probes of cardiac electrical activity," Am. J. Physiol. Heart Circ. Physiol. 290, H2633-H2643 (2006).
[CrossRef] [PubMed]

Wei, M. D.

A. Matiukas, B. G. Mitrea, A. M. Pertsov, J. P. Wuskell, M. D. Wei, J. Watras, A. C. Millard, and L. M. Loew, "New near-infrared optical probes of cardiac electrical activity," Am. J. Physiol. Heart Circ. Physiol. 290, H2633-H2643 (2006).
[CrossRef] [PubMed]

Weissleder, R.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757 -761 (2002).
[CrossRef] [PubMed]

Weitz, D. A.

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, "Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns," Biophys. J. 85, 2673-2683 (2003).
[CrossRef] [PubMed]

Wellner, M.

O. Bernus, M. Wellner, S. F. Mironov, and A. M. Pertsov, "Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods," Phys. Med. Biol. 50, 215-229 (2005).
[CrossRef] [PubMed]

O. Bernus, M. Wellner, and A. M. Pertsov, "Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves," Phys. Rev. E 70, 061913 (2004).
[CrossRef]

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, "Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns," Biophys. J. 85, 2673-2683 (2003).
[CrossRef] [PubMed]

Wijnbergen, C.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, "Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes," Neuron. 24, 791-802 (1999).
[CrossRef]

Wuskell, J. P.

A. Matiukas, B. G. Mitrea, A. M. Pertsov, J. P. Wuskell, M. D. Wei, J. Watras, A. C. Millard, and L. M. Loew, "New near-infrared optical probes of cardiac electrical activity," Am. J. Physiol. Heart Circ. Physiol. 290, H2633-H2643 (2006).
[CrossRef] [PubMed]

Yamazaki, M.

J. Kalifa, M. Klos, S. Zlochiver, S. Mironov, K. Tanaka, N. Ulahannan, M. Yamazaki, J. Jalife, and O. Berenfeld, "Endoscopic fluorescence mapping of the left atrium: A novel experimental approach for high resolution endocardial mapping in the intact heart," Heart Rhythm. 4, 916-924 (2007).
[CrossRef] [PubMed]

Yodh, A. G.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Metab. 23, 911-924 (2003).
[CrossRef] [PubMed]

Zaitsev, A. V.

W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov and J. Jalife, "Visualizing excitation waves in cardiac muscle using transillumination," Biophys. J. 80, 516-530 (2001).
[CrossRef] [PubMed]

Zemlin, C. W.

C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin and A. M. Pertsov, "Optical action potential upstroke morphology reveals near-surface transmural propagation direction," Circ. Res. 97, 277-284 (2005).
[CrossRef] [PubMed]

Zlochiver, S.

J. Kalifa, M. Klos, S. Zlochiver, S. Mironov, K. Tanaka, N. Ulahannan, M. Yamazaki, J. Jalife, and O. Berenfeld, "Endoscopic fluorescence mapping of the left atrium: A novel experimental approach for high resolution endocardial mapping in the intact heart," Heart Rhythm. 4, 916-924 (2007).
[CrossRef] [PubMed]

Am. J. Physiol. Heart Circ. Physiol.

A. Matiukas, B. G. Mitrea, A. M. Pertsov, J. P. Wuskell, M. D. Wei, J. Watras, A. C. Millard, and L. M. Loew, "New near-infrared optical probes of cardiac electrical activity," Am. J. Physiol. Heart Circ. Physiol. 290, H2633-H2643 (2006).
[CrossRef] [PubMed]

A. Nygren, C. Kondo, R. B. Clark, and W. R. Giles, "Voltage-sensitive dye mapping in Langendorff-perfused rat hearts," Am. J. Physiol. Heart Circ. Physiol. 284, H892-H902 (2003).

Appl. Opt.

Biochemistry.

E. Fluhler, V. G. Burnham and L. M. Loew, "Spectra, membrane binding and potentiometric responses of new charge shift probes," Biochemistry. 24, 5749-5755 (1985).
[CrossRef] [PubMed]

Biophys. J.

W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov and J. Jalife, "Visualizing excitation waves in cardiac muscle using transillumination," Biophys. J. 80, 516-530 (2001).
[CrossRef] [PubMed]

C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov, "Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns," Biophys. J. 85, 2673-2683 (2003).
[CrossRef] [PubMed]

S. V. Pandit, R. B. Clark, W. R. Giles, and S. S. Demir, "A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes," Biophys. J. 81, 3029-3051 (2001).
[CrossRef] [PubMed]

Circ. Res.

C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin and A. M. Pertsov, "Optical action potential upstroke morphology reveals near-surface transmural propagation direction," Circ. Res. 97, 277-284 (2005).
[CrossRef] [PubMed]

I. R. Efimov, V. P. Nikolski, and G. Salama, "Optical imaging of the heart," Circ. Res. 95, 21-33 (2004).
[CrossRef] [PubMed]

Heart Rhythm.

J. Kalifa, M. Klos, S. Zlochiver, S. Mironov, K. Tanaka, N. Ulahannan, M. Yamazaki, J. Jalife, and O. Berenfeld, "Endoscopic fluorescence mapping of the left atrium: A novel experimental approach for high resolution endocardial mapping in the intact heart," Heart Rhythm. 4, 916-924 (2007).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng.

L. Ding, R. Splinter, and S. B. Knisley, "Quantifying spatial localization of optical mapping using Monte Carlo simulations," IEEE Trans. Biomed. Eng. 48, 1098-1107 (2001).
[CrossRef] [PubMed]

D. L. Janks and B. J. Roth, "Averaging over depth during optical mapping of unipolar stimulation," IEEE Trans. Biomed. Eng. 49, 1051-1054 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
[CrossRef]

O. Bernus, K. S. Mukund, and A. M. Pertsov, "Detection of intramyocardial scroll waves using absorptive transillumination imaging," J. Biomed. Opt. 12, 14035 (2007).
[CrossRef]

J. Cardiovasc. Electrophysiol.

S. D. Girouard, K. R. Laurita and D. S. Rosenbaum, "Unique properties of cardiac action potentials recorded with voltage-sensitive dyes," J. Cardiovasc. Electrophysiol. 7, 1024-1038 (1996).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Metab. 23, 911-924 (2003).
[CrossRef] [PubMed]

J. Theor. Biol.

O. Berenfeld and A. M. Pertsov, "Dynamics of intramural scroll waves in three-dimensional continuous myocardium with rotational anisotropym," J. Theor. Biol. 199, 383-394 (1999).
[CrossRef] [PubMed]

Nat. Med.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757 -761 (2002).
[CrossRef] [PubMed]

Nature

R. A. Gray, A. M. Pertsov, and J. Jalife, "Spatial and temporal organization during cardiac fibrillation," Nature 392, 75-78 (1998).
[CrossRef] [PubMed]

Nature.

L. M. Loew, S. Scully, L. Simpson, and A. S. Waggoner, "Evidence for a charge-shift electrochromic mechanism in a probe of membrane potential," Nature. 281, 497-499 (1979).
[CrossRef] [PubMed]

Neuroimage.

E. M. C. Hillman, A. Devor, M. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, "Depth-resolved Optical Imaging and Microscopy of Vascular Compartment Dynamics during Somatosensory Stimulation," Neuroimage. 35, 89-104 (2007).
[CrossRef] [PubMed]

Neuron.

D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, "Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes," Neuron. 24, 791-802 (1999).
[CrossRef]

Opt. Lett.

Phys. Med. Biol.

O. Bernus, M. Wellner, S. F. Mironov, and A. M. Pertsov, "Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods," Phys. Med. Biol. 50, 215-229 (2005).
[CrossRef] [PubMed]

Phys. Rev. E

O. Bernus, M. Wellner, and A. M. Pertsov, "Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves," Phys. Rev. E 70, 061913 (2004).
[CrossRef]

Physiol. Meas.

H. D. Himel and S. B. Knisley, "Comparison of optical and electrical mapping of fibrillation," Physiol. Meas. 28, 707-719 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, "Changes in fluorescence, turbidity and birefringence associated with nerve excitation," Proc. Natl. Acad. Sci. 61, 883-888 (1968).
[CrossRef] [PubMed]

Proc. SPIE

E. M. C. Hillman, A. Devor, A. K. Dunn, and D. A. Boas, "Laminar optical tomography: high-resolution 3D functional imaging of superficial tissues," Proc. SPIE 6143, 61431M (2006).
[CrossRef]

Other

A. M. Pertsov, "Scroll waves in three-dimensional cardiac muscle," in Cardiac Electrophysiology: from cell to bedside, D. P. Zipes, and J. Jalife, eds., (Philadelphia, PA, Saunders, 2000), pp. 336-344.

D. S. Rosenbaum and J. Jalife, Optical mapping of cardiac excitation and arrhythmias, (Armonk, N Y, Futura Publishing Company, Inc. 2001).

D. Streeter, Handbook of Physiology, (Bethesda, MD, American Physiological Society, 1979).

Supplementary Material (3)

» Media 1: AVI (1089 KB)     
» Media 2: AVI (1620 KB)     
» Media 3: AVI (1639 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Langendorf perfusion with endo-cardial stimulation of right ventricle

Fig. 2.
Fig. 2.

Laminar Optical Tomography system set up to image Langendorf perfused rat heart with endo-cardial electrode stimulation.

Fig. 3.
Fig. 3.

(top) Measurement sensitivity functions for different LOT source-detector separations, simulated using Monte Carlo modeling of fluorescent light propagation in rat heart at 532nm excitation and 610nm emission. (bottom) schematic of sequential line-scanning acquisition paradigm. After 800 sequential x-direction line-scans in 1.20 seconds, the LOT beam is shifted 370µm in the y direction and line-scan acquisition is repeated after triggering from the next heart beat stimulus.

Fig. 4.
Fig. 4.

[Movie 1.1Mb .avi] Electrical simulation of wave propagation resulting from epi-cardial (top row) and endo-cardial (bottom row) stimulation, for properties consistent with the right ventricle of a rat heart. Left column: X-Y view of changes in the top 500µm of the epi-cardial surface at 18ms after stimulation, middle: cross-sectional X-Z view at the same time-point between the Y-locations indicated by the white dotted lines in the x-y plane images (epi-cardial surface is at the top). Right: timecourses of changes in the upper 500µm of the epi-cardial surface and lower 500µm of the endo-cardial surface for epi (top) and endo (bottom) cardial stimulation, averaged over the 10×10mm X-Y area. [Media 1]

Fig. 5.
Fig. 5.

[Movie 1.6Mb .avi] Comparison of raw LOT data to optical forward-model data based on electrical model. Left: 10×10 pixel raw LOT images for 5 different source-detector separations for measured and simulated epi-cardial stimulation (fractional change). Corresponding depth-resolved sensitivity functions are also shown (far left). Right: time-courses extracted from raw and simulated data for five source-detector separations. Insets show close-ups of regions highlighted by small grey squares. [Media 2]

Fig. 6.
Fig. 6.

[Movie 1.6Mb avi] 3D reconstructions of transmural electrical propagation in the right ventricle of a rat heart. Top row shows reconstructions of data acquired during endocardial stimulation, along with corresponding reconstructions of simulated optical data based on our model of electrical propagation. Middle row: equivalent results for epi-cardial stimulation. Bottom row: Z-T plots showing the average signal (over x and y) as a function of depth and time. The direction of the red stripe demonstrates the direction of propagation. Left: shows the ‘target’ behavior that we expect from our electrical model, center: shows the result of reconstructing simulated optical data based on the electrical model (to explore the ‘best case’ imaging performance), and right: shows experimental results for epi- and endo- cardial stimulation. [Media 3]

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

C M t V M ( r , t ) = I ion + D ˜ V M ( r , t )
F x , m ( r d r s , t ) = p x , m ( r , t ) H x ( r r s ) E m ( r d r ) d 3 r
p x , m ( r , t ) = ε x ( r , t ) c ( r ) η m ( r , t )
Δ F x , m ( r d r s , t t 0 ) = w Δ V ( r , t t 0 ) H x ( r r s ) E m ( r d r ) d 3 r
J x , m ( r s , r d , r ) H x ( r r s ) E m ( r d r )
1 w Δ F x , m ( r d r s , t t 0 ) = J x , m ( r s , r d , r ) Δ V ( r , t t 0 ) d 3 r
Δ F x , m ( r d r s , t t 0 ) F x , m ( r d r s , t t 0 ) = J x , m ( r s , r d , r ) Δ V ( r , t t 0 ) d 3 r L x , m ( r s r d )
Δ V S = J T ( JJ T + α I ) 1 Δ F · L ( F 0 ) · S
Δ F x , m sim ( r d r s , t t 0 ) F x , m sim ( r d r s , t 0 ) = J x , m ( r s , r d , r ) Δ V M ( r , t t 0 ) d 3 r L x , m ( r s r d )

Metrics