Abstract

We present a detailed study of the thermal properties of ultra-high quality factor (Q) microdisk resonators on silicon-on-insulator (SOI) platforms. We show that by preserving the buried oxide layer underneath the Si resonator and by adding a thin Si pedestal layer at the interface between the resonator and the oxide layer we can increase the overall thermal conductivity of the structure while the ultra-high Q property is preserved. This allows higher field intensities inside the resonator which are crucial for nonlinear optics applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and 1.6μm," IEEE J. Quantum Electron. 22,873-879 (1986).
    [CrossRef]
  2. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, (John Wiley, West Sussex, 2004).
    [CrossRef]
  3. L. Pavesi and D. J. Lockwood, Silicon Photonics, (Springer-verlag, New York, 2004).
  4. M. Lipson, "Guiding, modulating and emitting light on silicon-challenges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005).
    [CrossRef]
  5. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30,2891-2893 (2005).
    [CrossRef] [PubMed]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  7. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  8. L. Zhou and A. W. Poon, "Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators," Opt. Express 14, 6851-6857 (2006).
    [CrossRef] [PubMed]
  9. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
    [CrossRef] [PubMed]
  10. K. Vahala, Optical Microcavities, (World Scientific, Singapore, 2004).
    [CrossRef]
  11. T. Asano, B. S. Song, and S. Noda, "Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006).
    [CrossRef] [PubMed]
  12. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13,1515-1530 (2005).
    [CrossRef] [PubMed]
  13. M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for Chip-Scale Silicon Photonics," Opt. Express 15, 4694-4704 (2007).
    [CrossRef] [PubMed]
  14. T. J. Johnson, M. Borselli, and O. Painter, "Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator," Opt. Express 14, 817-831(2006).
    [CrossRef] [PubMed]
  15. P. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).
    [CrossRef] [PubMed]
  16. T. Carmon, L. Yang, and K. J. Vahala, "Dynamical thermal behavior and thermal self stability of microcavities," Opt. Express 12, 4742-4750 (2004).
    [CrossRef] [PubMed]
  17. G. Priem, P. Dumon,W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, "Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures," Opt. Express 13, 9623-9628 (2005).
    [CrossRef] [PubMed]
  18. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filtering," J. Lightwave Technol. 35, 1322-1331 (1999).

2007 (1)

2006 (3)

2005 (6)

2004 (3)

T. Carmon, L. Yang, and K. J. Vahala, "Dynamical thermal behavior and thermal self stability of microcavities," Opt. Express 12, 4742-4750 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filtering," J. Lightwave Technol. 35, 1322-1331 (1999).

1986 (1)

R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and 1.6μm," IEEE J. Quantum Electron. 22,873-879 (1986).
[CrossRef]

Adibi, A.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Asano, T.

Baets, R.

Barclay, P.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Bogaerts, W.

Borselli, M.

Carmon, T.

Cohen, O.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Dumon, P.

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filtering," J. Lightwave Technol. 35, 1322-1331 (1999).

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filtering," J. Lightwave Technol. 35, 1322-1331 (1999).

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filtering," J. Lightwave Technol. 35, 1322-1331 (1999).

Johnson, T. J.

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filtering," J. Lightwave Technol. 35, 1322-1331 (1999).

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Lipson, M.

S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30,2891-2893 (2005).
[CrossRef] [PubMed]

M. Lipson, "Guiding, modulating and emitting light on silicon-challenges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Lorenzo, J. P.

R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and 1.6μm," IEEE J. Quantum Electron. 22,873-879 (1986).
[CrossRef]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filtering," J. Lightwave Technol. 35, 1322-1331 (1999).

Morthier, G.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Noda, S.

Painter, O.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Poon, A. W.

Preble, S. F.

Priem, G.

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Schmidt, B. S.

Soltani, M.

Song, B. S.

Soref, R. A.

R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and 1.6μm," IEEE J. Quantum Electron. 22,873-879 (1986).
[CrossRef]

Srinivasan, K.

Vahala, K. J.

Van Thourhout, D.

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filtering," J. Lightwave Technol. 35, 1322-1331 (1999).

Xu, Q.

Yang, L.

Yegnanarayanan, S.

Zhou, L.

J. Lightwave Technol. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filtering," J. Lightwave Technol. 35, 1322-1331 (1999).

IEEE J. Quantum Electron. (1)

R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and 1.6μm," IEEE J. Quantum Electron. 22,873-879 (1986).
[CrossRef]

J. Lightwave Technol. (1)

M. Lipson, "Guiding, modulating and emitting light on silicon-challenges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005).
[CrossRef]

Nature (3)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Opt. Express (8)

L. Zhou and A. W. Poon, "Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators," Opt. Express 14, 6851-6857 (2006).
[CrossRef] [PubMed]

T. Asano, B. S. Song, and S. Noda, "Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13,1515-1530 (2005).
[CrossRef] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for Chip-Scale Silicon Photonics," Opt. Express 15, 4694-4704 (2007).
[CrossRef] [PubMed]

T. J. Johnson, M. Borselli, and O. Painter, "Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator," Opt. Express 14, 817-831(2006).
[CrossRef] [PubMed]

P. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).
[CrossRef] [PubMed]

T. Carmon, L. Yang, and K. J. Vahala, "Dynamical thermal behavior and thermal self stability of microcavities," Opt. Express 12, 4742-4750 (2004).
[CrossRef] [PubMed]

G. Priem, P. Dumon,W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, "Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures," Opt. Express 13, 9623-9628 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (3)

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, (John Wiley, West Sussex, 2004).
[CrossRef]

L. Pavesi and D. J. Lockwood, Silicon Photonics, (Springer-verlag, New York, 2004).

K. Vahala, Optical Microcavities, (World Scientific, Singapore, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) SEM image of a Si microdisk resonator with radius 20µm and thickness 250nm coupled to a waveguide with the width 550 nm. (b) The resonance spectrum of one of the microdisk modes at the critical coupling regime for different values of input optical power. The blue curve and the orange curve correspond to the lowest power and the highest power, respectively. By increasing the power, thermally-induced linewidth broadening as well as oscillation appears in the spectrum. The input power from the laser source for these four cases is 100µW: blue, 1.1mW: green, 1.6mW: red, 2.4mW: orange and the insertion loss of the waveguide is about 25 dB. The unloaded Q of this resonance mode is Q 0~1.2x106.

Fig. 2.
Fig. 2.

(a). Transmission response of a coupled waveguide-resonator structure, with a loaded Q=106, in the critical coupling regime, at different levels of input optical power P=[0.1, 0.33, 0.77, 3]K/Qa, as shown by different colors (blue, green, red, and orange curves, respectively). At higher powers, besides broadening, the spectrum shows a bistable-type behavior, as shown by the orange curve. In experiments, a sharp transition in the transmission (as shown by dash lines) is observed at one of the edges of the bistability region depending on the direction of sweeping. (b) The threshold (red curve) to observe bistable behavior in the spectrum. No bistable behavior is observed in the shaded region.

Fig. 3.
Fig. 3.

(a). Cross section of an undercut Si microdisk resonator held by an oxide micropost on a Si bulk layer. (b) Cross section of a Si microdisk resonator on an oxide substrate. A shallow Si pedestal layer with thickness t is at the interface between the microdisk and the oxide layer. The etched region that separate the disk perimeter from the surrounding top silicon layer is d. In both (a) and (b) the cross section of the generated heat energy, which has a distribution proportional to that of the electromagnetic mode energy of the resonator, is shown.

Fig. 4.
Fig. 4.

(a). Cross section of the temperature distribution in a Si pedestal microdisk resonator on substrate; the disk radius and thickness are 20 µm and 250 nm, the Si pedestal thickness is 50 nm; and the oxide substrate thickness is 1µm. (b) The normalized peak temperature of the pedestal microdisk resonator with air and oxide claddings are also shown with dash and solid lines, respectively, for different value of d, which is the distance between the disk edge and the surrounding silicon layer. The temperatures are normalized to the peak temperature of the undercut microdisk under similar energy inside the microdisk resonators.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

q ˙ in = ( Q Q abs ) η P 1 ( λ p λ r Δ λ 2 ) 2 + 1 = P h 1 ( λ p λ r Δ λ 2 ) 2 + 1
P h = P η Q Q abs
λ r = λ 0 ( 1 + a Δ T )
C p Δ T ˙ ( t ) = q ˙ in q ˙ out = q ˙ in K Δ T ( t )
0 = P h 1 ( λ p λ r Δ λ 2 ) 2 + 1 K ( λ r λ 0 1 ) a
T = j ( ω p ω r ) j ( ω p ω r ) + 1 τ 2 = j λ p λ r Δ λ 2 j λ p λ r Δ λ 2 + 1 2 ( τ = 2 Q ω r = 2 λ r ω r Δ λ )
. ( K T ) = Q th
1 r r ( r K T r ) + m r 2 K T r 2 z ( K T z ) = Q th
Q th = V σ E 2
E ̅ = E ̅ ( r , z ) exp ( i m ϕ )
1 r r ( r K T r ) z ( K T z ) = Q th

Metrics