Abstract

We report the observation of whispering gallery modes (WGM) in high quality GaAs/AlAs pillar microcavities defined by electron-beam lithography and electron cyclotron resonance reactive ion etching. Photoluminescence experiments, conducted using InAs quantum dots as an internal probe, reveal a remarkably simple WGM spectrum, consisting of a single series of TE modes. For diameters ranging from 3 to 4 µm, Q-factors in excess of 15 000 were measured, allowing for WGM lasing. Noticeably, sub-micron diameter micropillars also display high Qs (~1000), close to the limit set by intrinsic radiative losses. These results open the way to the development of original microlasers and improved quantum-dot single photon sources.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, "Low-threshold electrically pumped vertical-cavity surface emitting microlasers," Electron. Lett. 25, 1123-1124 (1989).
    [CrossRef]
  2. A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
    [CrossRef]
  3. R. Raj, J. A. Levenson, J. L. Oudar, and M. Bensoussan, "Vertical microcavity optical amplifying switch," Electron. Lett. 29, 167-169 (1993).
    [CrossRef]
  4. Y. Yamamoto, S. Machida, and G. Bj¨ork, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev. A 44, 657-668 (1991).
    [CrossRef] [PubMed]
  5. T. Baba, T. Hamano, F. Koyama, K. Iga, "Spontaneous emission factor of a microcavity DBR surface-emitting laser," IEEE J. Quantum Electron. 27, 1347-1358 (1991).
    [CrossRef]
  6. J. M. G’erard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, "Quantum boxes as active probes for photonic microstructures: The pillar microcavity case," Appl. Phys. Lett. 69, 449-451 (1996).
    [CrossRef]
  7. J. M. G’erard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
    [CrossRef]
  8. E. Moreau, I. Robert, J. M. G’erard, I. Abram, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865-2867 (2001).
    [CrossRef]
  9. C. Santori, D. Fattal, J. Vukovi’c, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a singlephoton device," Nature 419, 594-597 (2002).
    [CrossRef] [PubMed]
  10. S. Varoutsis, S. Laurent, P. Kramper, A. Lemaˆýtre, I.  Sagnes, I. Robert-Philip, and I. Abram, "Restoration of photon indistinguishability in the emission of a semiconductor quantum dot," Phys. Rev. B(R) 72, 041303(R)-4. (2005).
  11. J. P. Reithmaier, G. Se¸k, A. L¨offler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
    [CrossRef] [PubMed]
  12. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
    [CrossRef] [PubMed]
  13. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
    [CrossRef]
  14. M. Fujita, A. Sakai, and T. Baba, "Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
    [CrossRef]
  15. S. M. K. Thiyagarayan, A. F. J. Levi, C. K. Lin, I. Kim, P. D. Dapkus, and S. J. Pearton, "Continuous roomtemperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
    [CrossRef]
  16. B. Gayral, J. M. G’erard, A. Lemaˆýtre, C. Dupuis, L. Manin, and J. L. Pelouard, "High-Q wet-etched GaAs microdisks containing InAs quantum boxes," Appl. Phys. Lett. 75, 1908-1910 (1999).
    [CrossRef]
  17. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004).
    [CrossRef]
  18. N. C. Frateschi and A. F. J. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644-653 (1996).
    [CrossRef]
  19. V. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115-3 (2007).
    [CrossRef]
  20. The pillars under study were initially designed for experiments involving standard pillars modes, with an intentionally detuned cavity.
  21. As shown by Astratov et al in Ref. [19], excitation and collection in a direction perpendicular to the pillar axis can also be used to favor the observation of the WGM, provided the micropillars are located close enough to the edge of the wafer.
  22. Y. Xu, R. K. Lee, and A. Yariv, "Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity," Phys. Rev. A 61, 033808-10 (2000).
    [CrossRef]
  23. J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123- R181 (1982);R. E. Fern and A. Onton, "Refractive Index of AlAs," J. Appl. Phys. 42, 3499-3500 (1971);H. G. Grimmeiss and B. Monemar, "Temperature dependence of the refractive index of AIAs and AIP," Phys. Status. Solidi(a) 5, 109-114 (1971).
    [CrossRef]
  24. B. E. Little and S. T. Chu, "Estimating surface-roughness loss and output coupling in microdisk resonators," Opt. Lett. 21, 1390-1392 (1996).
    [CrossRef] [PubMed]
  25. S. Cortez, O. Krebs, P. Voisin, and J. M. G’erard, "Polarization of the interband optical dipole in InAs/GaAs self-organized quantum dots," Phys. Rev. B 63, 233306-4 (2001).
    [CrossRef]
  26. J. M. G’erard and B. Gayral, "Strong Purcell Effect for InAs Quantum Boxes in Three-Dimensional Solid-State Microcavities," J. Lightwave Technology 17, 2089-2095 (1999).
    [CrossRef]
  27. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum," Opt. Express 14, 1094-1105 (2006). The authors consider stationnary WGMs, with a mode volume two time smaller than propagating WGMs.
    [CrossRef] [PubMed]
  28. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. L¨offler, S. H¨ofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109-3 (2007).
    [CrossRef]
  29. T. Rivera, J.-P. Debray, J. M. G’erard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, "Optical losses in plasmaetched AlGaAs microresonators using reflection spectroscopy," Appl. Phys. Lett. 74, 911-913 (1999).
    [CrossRef]
  30. K. Phan Huy, J. Verbert, F. Mazen, P. No’e, J. G’erard, E. Hadji, F. Orucevic, J. Hare, V. Lef`evre-Seguin, A. Morand, and P. Benech, "Room temperature of Er-doped silicon-rich oxide microcavities supporting high-Q whispering gallery modes," in Nanophotonic Materials and Systems II: Silicon nanophotonics, Z. Gaburro and S. Cabrini, eds., Proc. SPIE 5925, 91-98 (2005).
  31. S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, "Continuous roomtemperature operation of microdisk laser diodes," Electron. Lett. 35, 1252-1254 (1999).
    [CrossRef]
  32. K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106-3 (2005).
    [CrossRef]
  33. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. G’erard, and I. Abram, "A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar," Physica E 13, 418-422 (2002).
    [CrossRef]
  34. W. L. Barnes, G. Bj¨ork, J. M. G’erard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002).
    [CrossRef]
  35. J. M. G’erard, "Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots," Top. Appl. Phys. 90, 269-314 (2003).
    [CrossRef]
  36. M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators," Phys. Rev. Lett 86, 3168-3171 (2001).
    [CrossRef] [PubMed]
  37. I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, and J. M. G’erard, "Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble," Appl. Phys. Lett. 86, 041904-3 (2005).
    [CrossRef]

2007 (2)

V. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115-3 (2007).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. L¨offler, S. H¨ofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109-3 (2007).
[CrossRef]

2006 (1)

2005 (3)

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, and J. M. G’erard, "Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble," Appl. Phys. Lett. 86, 041904-3 (2005).
[CrossRef]

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106-3 (2005).
[CrossRef]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

2004 (2)

J. P. Reithmaier, G. Se¸k, A. L¨offler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004).
[CrossRef]

2003 (1)

J. M. G’erard, "Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots," Top. Appl. Phys. 90, 269-314 (2003).
[CrossRef]

2002 (3)

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. G’erard, and I. Abram, "A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar," Physica E 13, 418-422 (2002).
[CrossRef]

W. L. Barnes, G. Bj¨ork, J. M. G’erard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002).
[CrossRef]

C. Santori, D. Fattal, J. Vukovi’c, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a singlephoton device," Nature 419, 594-597 (2002).
[CrossRef] [PubMed]

2001 (3)

E. Moreau, I. Robert, J. M. G’erard, I. Abram, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865-2867 (2001).
[CrossRef]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators," Phys. Rev. Lett 86, 3168-3171 (2001).
[CrossRef] [PubMed]

S. Cortez, O. Krebs, P. Voisin, and J. M. G’erard, "Polarization of the interband optical dipole in InAs/GaAs self-organized quantum dots," Phys. Rev. B 63, 233306-4 (2001).
[CrossRef]

2000 (1)

Y. Xu, R. K. Lee, and A. Yariv, "Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity," Phys. Rev. A 61, 033808-10 (2000).
[CrossRef]

1999 (5)

T. Rivera, J.-P. Debray, J. M. G’erard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, "Optical losses in plasmaetched AlGaAs microresonators using reflection spectroscopy," Appl. Phys. Lett. 74, 911-913 (1999).
[CrossRef]

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, "Continuous roomtemperature operation of microdisk laser diodes," Electron. Lett. 35, 1252-1254 (1999).
[CrossRef]

J. M. G’erard and B. Gayral, "Strong Purcell Effect for InAs Quantum Boxes in Three-Dimensional Solid-State Microcavities," J. Lightwave Technology 17, 2089-2095 (1999).
[CrossRef]

B. Gayral, J. M. G’erard, A. Lemaˆýtre, C. Dupuis, L. Manin, and J. L. Pelouard, "High-Q wet-etched GaAs microdisks containing InAs quantum boxes," Appl. Phys. Lett. 75, 1908-1910 (1999).
[CrossRef]

M. Fujita, A. Sakai, and T. Baba, "Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
[CrossRef]

1998 (2)

S. M. K. Thiyagarayan, A. F. J. Levi, C. K. Lin, I. Kim, P. D. Dapkus, and S. J. Pearton, "Continuous roomtemperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
[CrossRef]

J. M. G’erard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

1996 (3)

J. M. G’erard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, "Quantum boxes as active probes for photonic microstructures: The pillar microcavity case," Appl. Phys. Lett. 69, 449-451 (1996).
[CrossRef]

N. C. Frateschi and A. F. J. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644-653 (1996).
[CrossRef]

B. E. Little and S. T. Chu, "Estimating surface-roughness loss and output coupling in microdisk resonators," Opt. Lett. 21, 1390-1392 (1996).
[CrossRef] [PubMed]

1993 (1)

R. Raj, J. A. Levenson, J. L. Oudar, and M. Bensoussan, "Vertical microcavity optical amplifying switch," Electron. Lett. 29, 167-169 (1993).
[CrossRef]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

1991 (2)

Y. Yamamoto, S. Machida, and G. Bj¨ork, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev. A 44, 657-668 (1991).
[CrossRef] [PubMed]

T. Baba, T. Hamano, F. Koyama, K. Iga, "Spontaneous emission factor of a microcavity DBR surface-emitting laser," IEEE J. Quantum Electron. 27, 1347-1358 (1991).
[CrossRef]

1989 (2)

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, "Low-threshold electrically pumped vertical-cavity surface emitting microlasers," Electron. Lett. 25, 1123-1124 (1989).
[CrossRef]

A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
[CrossRef]

1982 (1)

J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123- R181 (1982);R. E. Fern and A. Onton, "Refractive Index of AlAs," J. Appl. Phys. 42, 3499-3500 (1971);H. G. Grimmeiss and B. Monemar, "Temperature dependence of the refractive index of AIAs and AIP," Phys. Status. Solidi(a) 5, 109-114 (1971).
[CrossRef]

J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123- R181 (1982);R. E. Fern and A. Onton, "Refractive Index of AlAs," J. Appl. Phys. 42, 3499-3500 (1971);H. G. Grimmeiss and B. Monemar, "Temperature dependence of the refractive index of AIAs and AIP," Phys. Status. Solidi(a) 5, 109-114 (1971).
[CrossRef]

J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123- R181 (1982);R. E. Fern and A. Onton, "Refractive Index of AlAs," J. Appl. Phys. 42, 3499-3500 (1971);H. G. Grimmeiss and B. Monemar, "Temperature dependence of the refractive index of AIAs and AIP," Phys. Status. Solidi(a) 5, 109-114 (1971).
[CrossRef]

Astratov, V.

V. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115-3 (2007).
[CrossRef]

Baba, T.

M. Fujita, A. Sakai, and T. Baba, "Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
[CrossRef]

T. Baba, T. Hamano, F. Koyama, K. Iga, "Spontaneous emission factor of a microcavity DBR surface-emitting laser," IEEE J. Quantum Electron. 27, 1347-1358 (1991).
[CrossRef]

Badolato, A.

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, and J. M. G’erard, "Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble," Appl. Phys. Lett. 86, 041904-3 (2005).
[CrossRef]

Barclay, P. E.

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106-3 (2005).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004).
[CrossRef]

Barnes, W. L.

W. L. Barnes, G. Bj¨ork, J. M. G’erard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002).
[CrossRef]

Bayer, M.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators," Phys. Rev. Lett 86, 3168-3171 (2001).
[CrossRef] [PubMed]

Bensoussan, M.

R. Raj, J. A. Levenson, J. L. Oudar, and M. Bensoussan, "Vertical microcavity optical amplifying switch," Electron. Lett. 29, 167-169 (1993).
[CrossRef]

Birnbaum, K. M.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

Bj¨ork, G.

W. L. Barnes, G. Bj¨ork, J. M. G’erard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002).
[CrossRef]

Y. Yamamoto, S. Machida, and G. Bj¨ork, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev. A 44, 657-668 (1991).
[CrossRef] [PubMed]

Blakemore, J. S.

J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123- R181 (1982);R. E. Fern and A. Onton, "Refractive Index of AlAs," J. Appl. Phys. 42, 3499-3500 (1971);H. G. Grimmeiss and B. Monemar, "Temperature dependence of the refractive index of AIAs and AIP," Phys. Status. Solidi(a) 5, 109-114 (1971).
[CrossRef]

Boca, A.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

Boozer, A. D.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

Borselli, M.

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum," Opt. Express 14, 1094-1105 (2006). The authors consider stationnary WGMs, with a mode volume two time smaller than propagating WGMs.
[CrossRef] [PubMed]

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106-3 (2005).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004).
[CrossRef]

Cassabois, G.

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, and J. M. G’erard, "Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble," Appl. Phys. Lett. 86, 041904-3 (2005).
[CrossRef]

Chu, S. T.

Cohen, D. A.

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, "Continuous roomtemperature operation of microdisk laser diodes," Electron. Lett. 35, 1252-1254 (1999).
[CrossRef]

Cortez, S.

S. Cortez, O. Krebs, P. Voisin, and J. M. G’erard, "Polarization of the interband optical dipole in InAs/GaAs self-organized quantum dots," Phys. Rev. B 63, 233306-4 (2001).
[CrossRef]

Dapkus, P. D.

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, "Continuous roomtemperature operation of microdisk laser diodes," Electron. Lett. 35, 1252-1254 (1999).
[CrossRef]

S. M. K. Thiyagarayan, A. F. J. Levi, C. K. Lin, I. Kim, P. D. Dapkus, and S. J. Pearton, "Continuous roomtemperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
[CrossRef]

Darson, D.

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, and J. M. G’erard, "Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble," Appl. Phys. Lett. 86, 041904-3 (2005).
[CrossRef]

Debray, J.-P.

T. Rivera, J.-P. Debray, J. M. G’erard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, "Optical losses in plasmaetched AlGaAs microresonators using reflection spectroscopy," Appl. Phys. Lett. 74, 911-913 (1999).
[CrossRef]

Delalande, C.

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, and J. M. G’erard, "Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble," Appl. Phys. Lett. 86, 041904-3 (2005).
[CrossRef]

Fattal, D.

C. Santori, D. Fattal, J. Vukovi’c, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a singlephoton device," Nature 419, 594-597 (2002).
[CrossRef] [PubMed]

Favero, I.

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, and J. M. G’erard, "Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble," Appl. Phys. Lett. 86, 041904-3 (2005).
[CrossRef]

Fern, R. E.

J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123- R181 (1982);R. E. Fern and A. Onton, "Refractive Index of AlAs," J. Appl. Phys. 42, 3499-3500 (1971);H. G. Grimmeiss and B. Monemar, "Temperature dependence of the refractive index of AIAs and AIP," Phys. Status. Solidi(a) 5, 109-114 (1971).
[CrossRef]

Ferreira, R.

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, and J. M. G’erard, "Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble," Appl. Phys. Lett. 86, 041904-3 (2005).
[CrossRef]

Florez, L. T.

A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
[CrossRef]

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, "Low-threshold electrically pumped vertical-cavity surface emitting microlasers," Electron. Lett. 25, 1123-1124 (1989).
[CrossRef]

Forchel, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. L¨offler, S. H¨ofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109-3 (2007).
[CrossRef]

J. P. Reithmaier, G. Se¸k, A. L¨offler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators," Phys. Rev. Lett 86, 3168-3171 (2001).
[CrossRef] [PubMed]

Fox, A. M.

V. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115-3 (2007).
[CrossRef]

Frateschi, N. C.

N. C. Frateschi and A. F. J. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644-653 (1996).
[CrossRef]

Fry, P. W.

V. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115-3 (2007).
[CrossRef]

Fujita, M.

M. Fujita, A. Sakai, and T. Baba, "Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
[CrossRef]

G’erard, J. M.

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, and J. M. G’erard, "Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble," Appl. Phys. Lett. 86, 041904-3 (2005).
[CrossRef]

G’erard,, J. M.

S. Cortez, O. Krebs, P. Voisin, and J. M. G’erard, "Polarization of the interband optical dipole in InAs/GaAs self-organized quantum dots," Phys. Rev. B 63, 233306-4 (2001).
[CrossRef]

Gayral, B.

B. Gayral, J. M. G’erard, A. Lemaˆýtre, C. Dupuis, L. Manin, and J. L. Pelouard, "High-Q wet-etched GaAs microdisks containing InAs quantum boxes," Appl. Phys. Lett. 75, 1908-1910 (1999).
[CrossRef]

Gorbunov, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. L¨offler, S. H¨ofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109-3 (2007).
[CrossRef]

Grimmeiss, H. G.

J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123- R181 (1982);R. E. Fern and A. Onton, "Refractive Index of AlAs," J. Appl. Phys. 42, 3499-3500 (1971);H. G. Grimmeiss and B. Monemar, "Temperature dependence of the refractive index of AIAs and AIP," Phys. Status. Solidi(a) 5, 109-114 (1971).
[CrossRef]

H¨ofling, S.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. L¨offler, S. H¨ofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109-3 (2007).
[CrossRef]

Hamano, T.

T. Baba, T. Hamano, F. Koyama, K. Iga, "Spontaneous emission factor of a microcavity DBR surface-emitting laser," IEEE J. Quantum Electron. 27, 1347-1358 (1991).
[CrossRef]

Harbison, J. P.

A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
[CrossRef]

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, "Low-threshold electrically pumped vertical-cavity surface emitting microlasers," Electron. Lett. 25, 1123-1124 (1989).
[CrossRef]

Hofmann, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. L¨offler, S. H¨ofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109-3 (2007).
[CrossRef]

J. P. Reithmaier, G. Se¸k, A. L¨offler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Hopkinson, M.

V. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115-3 (2007).
[CrossRef]

Iga, K.

T. Baba, T. Hamano, F. Koyama, K. Iga, "Spontaneous emission factor of a microcavity DBR surface-emitting laser," IEEE J. Quantum Electron. 27, 1347-1358 (1991).
[CrossRef]

Jankovic, A.

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, and J. M. G’erard, "Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble," Appl. Phys. Lett. 86, 041904-3 (2005).
[CrossRef]

Jewell, J. L.

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, "Low-threshold electrically pumped vertical-cavity surface emitting microlasers," Electron. Lett. 25, 1123-1124 (1989).
[CrossRef]

A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
[CrossRef]

Johnson, T. J.

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106-3 (2005).
[CrossRef]

Jones, B. D.

V. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115-3 (2007).
[CrossRef]

Kamp, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. L¨offler, S. H¨ofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109-3 (2007).
[CrossRef]

Keldysh, L. V.

J. P. Reithmaier, G. Se¸k, A. L¨offler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Kim, I.

S. M. K. Thiyagarayan, A. F. J. Levi, C. K. Lin, I. Kim, P. D. Dapkus, and S. J. Pearton, "Continuous roomtemperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
[CrossRef]

Kimble, H. J.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

Koyama, F.

T. Baba, T. Hamano, F. Koyama, K. Iga, "Spontaneous emission factor of a microcavity DBR surface-emitting laser," IEEE J. Quantum Electron. 27, 1347-1358 (1991).
[CrossRef]

Krebs, O.

S. Cortez, O. Krebs, P. Voisin, and J. M. G’erard, "Polarization of the interband optical dipole in InAs/GaAs self-organized quantum dots," Phys. Rev. B 63, 233306-4 (2001).
[CrossRef]

Krishna, S.

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum," Opt. Express 14, 1094-1105 (2006). The authors consider stationnary WGMs, with a mode volume two time smaller than propagating WGMs.
[CrossRef] [PubMed]

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106-3 (2005).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Se¸k, A. L¨offler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Se¸k, A. L¨offler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Kwon, S. H.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. L¨offler, S. H¨ofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109-3 (2007).
[CrossRef]

L¨offler, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. L¨offler, S. H¨ofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109-3 (2007).
[CrossRef]

J. P. Reithmaier, G. Se¸k, A. L¨offler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Lam, S.

V. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115-3 (2007).
[CrossRef]

Larionov, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators," Phys. Rev. Lett 86, 3168-3171 (2001).
[CrossRef] [PubMed]

Lee, R. K.

Y. Xu, R. K. Lee, and A. Yariv, "Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity," Phys. Rev. A 61, 033808-10 (2000).
[CrossRef]

Lee, Y. H.

A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
[CrossRef]

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, "Low-threshold electrically pumped vertical-cavity surface emitting microlasers," Electron. Lett. 25, 1123-1124 (1989).
[CrossRef]

Levenson, J. A.

R. Raj, J. A. Levenson, J. L. Oudar, and M. Bensoussan, "Vertical microcavity optical amplifying switch," Electron. Lett. 29, 167-169 (1993).
[CrossRef]

Levi, A. F. J.

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, "Continuous roomtemperature operation of microdisk laser diodes," Electron. Lett. 35, 1252-1254 (1999).
[CrossRef]

S. M. K. Thiyagarayan, A. F. J. Levi, C. K. Lin, I. Kim, P. D. Dapkus, and S. J. Pearton, "Continuous roomtemperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
[CrossRef]

N. C. Frateschi and A. F. J. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644-653 (1996).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Li, R.

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, "Continuous roomtemperature operation of microdisk laser diodes," Electron. Lett. 35, 1252-1254 (1999).
[CrossRef]

Lin, C. K.

S. M. K. Thiyagarayan, A. F. J. Levi, C. K. Lin, I. Kim, P. D. Dapkus, and S. J. Pearton, "Continuous roomtemperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
[CrossRef]

Little, B. E.

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Machida, S.

Y. Yamamoto, S. Machida, and G. Bj¨ork, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev. A 44, 657-668 (1991).
[CrossRef] [PubMed]

Manin, L.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. G’erard, and I. Abram, "A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar," Physica E 13, 418-422 (2002).
[CrossRef]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, "Low-threshold electrically pumped vertical-cavity surface emitting microlasers," Electron. Lett. 25, 1123-1124 (1989).
[CrossRef]

McDonald, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators," Phys. Rev. Lett 86, 3168-3171 (2001).
[CrossRef] [PubMed]

Miller, R.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

Monemar, B.

J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123- R181 (1982);R. E. Fern and A. Onton, "Refractive Index of AlAs," J. Appl. Phys. 42, 3499-3500 (1971);H. G. Grimmeiss and B. Monemar, "Temperature dependence of the refractive index of AIAs and AIP," Phys. Status. Solidi(a) 5, 109-114 (1971).
[CrossRef]

Moreau, E.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. G’erard, and I. Abram, "A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar," Physica E 13, 418-422 (2002).
[CrossRef]

E. Moreau, I. Robert, J. M. G’erard, I. Abram, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865-2867 (2001).
[CrossRef]

Northup, T. E.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

Onton, A.

J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123- R181 (1982);R. E. Fern and A. Onton, "Refractive Index of AlAs," J. Appl. Phys. 42, 3499-3500 (1971);H. G. Grimmeiss and B. Monemar, "Temperature dependence of the refractive index of AIAs and AIP," Phys. Status. Solidi(a) 5, 109-114 (1971).
[CrossRef]

Oudar, J. L.

R. Raj, J. A. Levenson, J. L. Oudar, and M. Bensoussan, "Vertical microcavity optical amplifying switch," Electron. Lett. 29, 167-169 (1993).
[CrossRef]

Painter, O.

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum," Opt. Express 14, 1094-1105 (2006). The authors consider stationnary WGMs, with a mode volume two time smaller than propagating WGMs.
[CrossRef] [PubMed]

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106-3 (2005).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004).
[CrossRef]

Pearton, S. J.

S. M. K. Thiyagarayan, A. F. J. Levi, C. K. Lin, I. Kim, P. D. Dapkus, and S. J. Pearton, "Continuous roomtemperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Petroff, P. M.

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, and J. M. G’erard, "Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble," Appl. Phys. Lett. 86, 041904-3 (2005).
[CrossRef]

Raj, R.

R. Raj, J. A. Levenson, J. L. Oudar, and M. Bensoussan, "Vertical microcavity optical amplifying switch," Electron. Lett. 29, 167-169 (1993).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. Se¸k, A. L¨offler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators," Phys. Rev. Lett 86, 3168-3171 (2001).
[CrossRef] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Se¸k, A. L¨offler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. L¨offler, S. H¨ofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109-3 (2007).
[CrossRef]

J. P. Reithmaier, G. Se¸k, A. L¨offler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Rivera, T.

T. Rivera, J.-P. Debray, J. M. G’erard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, "Optical losses in plasmaetched AlGaAs microresonators using reflection spectroscopy," Appl. Phys. Lett. 74, 911-913 (1999).
[CrossRef]

Robert, I.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. G’erard, and I. Abram, "A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar," Physica E 13, 418-422 (2002).
[CrossRef]

E. Moreau, I. Robert, J. M. G’erard, I. Abram, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865-2867 (2001).
[CrossRef]

Roussignol, Ph.

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, and J. M. G’erard, "Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble," Appl. Phys. Lett. 86, 041904-3 (2005).
[CrossRef]

Ryu, S.

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, "Continuous roomtemperature operation of microdisk laser diodes," Electron. Lett. 35, 1252-1254 (1999).
[CrossRef]

Sakai, A.

M. Fujita, A. Sakai, and T. Baba, "Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
[CrossRef]

Santori, C.

C. Santori, D. Fattal, J. Vukovi’c, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a singlephoton device," Nature 419, 594-597 (2002).
[CrossRef] [PubMed]

Sanvitto, D.

V. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115-3 (2007).
[CrossRef]

Scherer, A.

A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
[CrossRef]

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, "Low-threshold electrically pumped vertical-cavity surface emitting microlasers," Electron. Lett. 25, 1123-1124 (1989).
[CrossRef]

Schneider, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. L¨offler, S. H¨ofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109-3 (2007).
[CrossRef]

Se¸k, G.

J. P. Reithmaier, G. Se¸k, A. L¨offler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Skolnick, M. S.

V. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115-3 (2007).
[CrossRef]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Srinivasan, K.

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum," Opt. Express 14, 1094-1105 (2006). The authors consider stationnary WGMs, with a mode volume two time smaller than propagating WGMs.
[CrossRef] [PubMed]

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106-3 (2005).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004).
[CrossRef]

Stintz, A.

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum," Opt. Express 14, 1094-1105 (2006). The authors consider stationnary WGMs, with a mode volume two time smaller than propagating WGMs.
[CrossRef] [PubMed]

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106-3 (2005).
[CrossRef]

Strauß, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. L¨offler, S. H¨ofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109-3 (2007).
[CrossRef]

Tahraoui, A.

V. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115-3 (2007).
[CrossRef]

Thierry-Mieg, V.

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. G’erard, and I. Abram, "A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar," Physica E 13, 418-422 (2002).
[CrossRef]

Thiyagarajan, S. M. K.

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, "Continuous roomtemperature operation of microdisk laser diodes," Electron. Lett. 35, 1252-1254 (1999).
[CrossRef]

Thiyagarayan, S. M. K.

S. M. K. Thiyagarayan, A. F. J. Levi, C. K. Lin, I. Kim, P. D. Dapkus, and S. J. Pearton, "Continuous roomtemperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
[CrossRef]

Voisin, C.

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, and J. M. G’erard, "Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble," Appl. Phys. Lett. 86, 041904-3 (2005).
[CrossRef]

Voisin, P.

S. Cortez, O. Krebs, P. Voisin, and J. M. G’erard, "Polarization of the interband optical dipole in InAs/GaAs self-organized quantum dots," Phys. Rev. B 63, 233306-4 (2001).
[CrossRef]

Walker, S.

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, "Low-threshold electrically pumped vertical-cavity surface emitting microlasers," Electron. Lett. 25, 1123-1124 (1989).
[CrossRef]

Weidner, F.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators," Phys. Rev. Lett 86, 3168-3171 (2001).
[CrossRef] [PubMed]

Whittaker, D. M.

V. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115-3 (2007).
[CrossRef]

Xu, Y.

Y. Xu, R. K. Lee, and A. Yariv, "Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity," Phys. Rev. A 61, 033808-10 (2000).
[CrossRef]

Yamamoto, Y.

Y. Yamamoto, S. Machida, and G. Bj¨ork, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev. A 44, 657-668 (1991).
[CrossRef] [PubMed]

Yang, S.

V. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115-3 (2007).
[CrossRef]

Yariv, A.

Y. Xu, R. K. Lee, and A. Yariv, "Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity," Phys. Rev. A 61, 033808-10 (2000).
[CrossRef]

Appl. Phys. Lett. (11)

A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989).
[CrossRef]

J. M. G’erard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, "Quantum boxes as active probes for photonic microstructures: The pillar microcavity case," Appl. Phys. Lett. 69, 449-451 (1996).
[CrossRef]

E. Moreau, I. Robert, J. M. G’erard, I. Abram, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865-2867 (2001).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

B. Gayral, J. M. G’erard, A. Lemaˆýtre, C. Dupuis, L. Manin, and J. L. Pelouard, "High-Q wet-etched GaAs microdisks containing InAs quantum boxes," Appl. Phys. Lett. 75, 1908-1910 (1999).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004).
[CrossRef]

V. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, "Whispering gallery resonances in semiconductor micropillars," Appl. Phys. Lett. 91, 071115-3 (2007).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. L¨offler, S. H¨ofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109-3 (2007).
[CrossRef]

T. Rivera, J.-P. Debray, J. M. G’erard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, "Optical losses in plasmaetched AlGaAs microresonators using reflection spectroscopy," Appl. Phys. Lett. 74, 911-913 (1999).
[CrossRef]

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106-3 (2005).
[CrossRef]

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, and J. M. G’erard, "Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble," Appl. Phys. Lett. 86, 041904-3 (2005).
[CrossRef]

Electron. Lett. (4)

S. M. K. Thiyagarajan, D. A. Cohen, A. F. J. Levi, S. Ryu, R. Li, and P. D. Dapkus, "Continuous roomtemperature operation of microdisk laser diodes," Electron. Lett. 35, 1252-1254 (1999).
[CrossRef]

S. M. K. Thiyagarayan, A. F. J. Levi, C. K. Lin, I. Kim, P. D. Dapkus, and S. J. Pearton, "Continuous roomtemperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
[CrossRef]

R. Raj, J. A. Levenson, J. L. Oudar, and M. Bensoussan, "Vertical microcavity optical amplifying switch," Electron. Lett. 29, 167-169 (1993).
[CrossRef]

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, "Low-threshold electrically pumped vertical-cavity surface emitting microlasers," Electron. Lett. 25, 1123-1124 (1989).
[CrossRef]

Eur. Phys. J. D (1)

W. L. Barnes, G. Bj¨ork, J. M. G’erard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Baba, T. Hamano, F. Koyama, K. Iga, "Spontaneous emission factor of a microcavity DBR surface-emitting laser," IEEE J. Quantum Electron. 27, 1347-1358 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Fujita, A. Sakai, and T. Baba, "Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
[CrossRef]

J. Appl. Phys. (2)

N. C. Frateschi and A. F. J. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644-653 (1996).
[CrossRef]

J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123- R181 (1982);R. E. Fern and A. Onton, "Refractive Index of AlAs," J. Appl. Phys. 42, 3499-3500 (1971);H. G. Grimmeiss and B. Monemar, "Temperature dependence of the refractive index of AIAs and AIP," Phys. Status. Solidi(a) 5, 109-114 (1971).
[CrossRef]

J. Lightwave Technology (1)

J. M. G’erard and B. Gayral, "Strong Purcell Effect for InAs Quantum Boxes in Three-Dimensional Solid-State Microcavities," J. Lightwave Technology 17, 2089-2095 (1999).
[CrossRef]

Nature (3)

J. P. Reithmaier, G. Se¸k, A. L¨offler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vukovi’c, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a singlephoton device," Nature 419, 594-597 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

Y. Xu, R. K. Lee, and A. Yariv, "Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity," Phys. Rev. A 61, 033808-10 (2000).
[CrossRef]

Y. Yamamoto, S. Machida, and G. Bj¨ork, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev. A 44, 657-668 (1991).
[CrossRef] [PubMed]

Phys. Rev. B (1)

S. Cortez, O. Krebs, P. Voisin, and J. M. G’erard, "Polarization of the interband optical dipole in InAs/GaAs self-organized quantum dots," Phys. Rev. B 63, 233306-4 (2001).
[CrossRef]

Phys. Rev. Lett (1)

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, "Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators," Phys. Rev. Lett 86, 3168-3171 (2001).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. M. G’erard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Physica E (1)

E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. G’erard, and I. Abram, "A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar," Physica E 13, 418-422 (2002).
[CrossRef]

Top. Appl. Phys. (1)

J. M. G’erard, "Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots," Top. Appl. Phys. 90, 269-314 (2003).
[CrossRef]

Other (4)

K. Phan Huy, J. Verbert, F. Mazen, P. No’e, J. G’erard, E. Hadji, F. Orucevic, J. Hare, V. Lef`evre-Seguin, A. Morand, and P. Benech, "Room temperature of Er-doped silicon-rich oxide microcavities supporting high-Q whispering gallery modes," in Nanophotonic Materials and Systems II: Silicon nanophotonics, Z. Gaburro and S. Cabrini, eds., Proc. SPIE 5925, 91-98 (2005).

S. Varoutsis, S. Laurent, P. Kramper, A. Lemaˆýtre, I.  Sagnes, I. Robert-Philip, and I. Abram, "Restoration of photon indistinguishability in the emission of a semiconductor quantum dot," Phys. Rev. B(R) 72, 041303(R)-4. (2005).

The pillars under study were initially designed for experiments involving standard pillars modes, with an intentionally detuned cavity.

As shown by Astratov et al in Ref. [19], excitation and collection in a direction perpendicular to the pillar axis can also be used to favor the observation of the WGM, provided the micropillars are located close enough to the edge of the wafer.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a): inner structure of a 4.15µm diameter micropillar. On this SEM image, the GaAs and AlAs layers appear respectively in light and dark grey colours. (b): Schematic view of a micropillar with a top Ni hard mask. The top collection of light associated to standard pillars mode (PM) is blocked by the hard mask, whereas the signal associated to WGMs can escape through the pillar sidewalls. (c): For some pillars, to enable simultaneous optical access to the WGMs and standard pillar modes, the Ni hard mask was carefully removed with a FIB.

Fig. 2.
Fig. 2.

Microphotoluminescence spectra of a 4.15 µm diameter pillar, measured at 14 K, without (a) and with (b) Ni top mask. In (a), the standard pillar modes are clearly observable. In addition, three WGMs emerge from the QD emission base line, as clearly observed in the spectrum shown in the inset, for which a 4 times higher integration time was used. The Ni top mask greatly improves the detection contrast of the WGMs (b). Compared to standard microdisk or spherical cavities, the spectrum is remarkably simple. Only one family of TE1,1,m modes is observed (for clarity, the modes are indexed by the azimutal number m).

Fig. 3.
Fig. 3.

Free spectral range (FSR) of the TE1,1,m modes versus the pillar diameter. The theory (solid line) accurately reproduces the experimental data (∙). There are no experimental points around d=1.2µm because the spectra only display one mode peaked around the QDs emission maxima (for such small diameters, the FSR is of the order of the QDs inhomogeneous linewidth).

Fig. 4.
Fig. 4.

WGM structure calculated within the EIM model. (a): Intensity profile of the TE1 mode guided along the GaAs cavity in an infinite planar cavity. (b) and (c): Field distribution of the TE1,1,17 mode in a 2µm diameter pillar. (b) is a map of the radial and vertical distribution of the field intensity along one pillar diameter. (c) shows the amplitude of the radial component of E in the GaAs plane (z=0). (d): Effective volume V eff of the TE1,1,m modes versus the reduced diameter d/λ calculated within the EIM approach. m is chosen so that the mode energy is around 1.3 eV. The solid red line is power law fit. For comparison, the mode volume of the fundamental standard pillar mode and the mode volume of TE1,1,m WGMs in air-suspended GaAs microdisks are also shown.

Fig. 5.
Fig. 5.

High Q-factor WGMs in micropillars with various diameters. Solid lines are fit to Lorenztian lineshapes and double Lorenztian for the right plot. A Q-factor larger than 900 is achieved in a 750nm diameter pillar. For diameters in the 3–4µm range, Q-factors can exceed 15 000 (characterization with the high resolution grating). Some peaks are split (right), most likely due to localized defects on the pillar circumference which lift the ±m two-fold degeneracy.

Fig. 6.
Fig. 6.

Lasing in a 3.65 µm pillar and determination of the bare cavity Q-factor. The TE1,1,34 mode under study is centered at 1.307 eV. Under high excitation power, above 95mW, the µPL integrated signal reveals a clear lasing behavior. The bare cavity Q-factor, around 15 000, is estimated at the power corresponding to the lasing threshold.

Fig. 7.
Fig. 7.

WGM Q-factors versus diameter for small pillars (black squares). The solid red line corresponds to Q rad, the Q-factor limited by intrinisc radiative losses, calculated within the EIM approach. In the sub-micron range, the WGM Q-factor seems most likely limited by intrinsic radiation losses rather than by additional extrinsic losses.

Fig. 8.
Fig. 8.

Electrically pumped WGMmicrolasers: usual geometry with a suspended microdisk (a), and potential implementation of the micropillar geometry (b and c). Inserting Bragg mirrors in the structure allows for a partial inhibition of SE into leaky modes (d). The right plot shows the shift of the Bragg stop band when the angle of incidence increases from 0 to 23° or more.

Fig. 9.
Fig. 9.

Density of state in a micropillar cavity seen by a quantum dot localized near the sidewall of the GaAs cavity. The QD resonance frequency is tuned on the fundamental standard pillar mode (PM). Compared to a pillar sustaining low-Q WGMs (a), the existence of high-Q WGMs (b) significantly reduces the density of leaky modes seen by the QD, the effect being maximum for a QD at a WGM antinode.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

x J m + 1 ( x ) = ( m + η x n e 2 1 ) J m ( x ) .
V eff = V n 2 ( r ) E ( r ) 2 d 3 r max [ n ( r ) 2 E ( r ) 2 ] ,
ε = β Q Q int = F F + γ Q Q int ,
ρ tot ( λ ) = 2 3 × 8 π λ ( n λ ) 3 .
ρ WGM ( λ ) = 2 Δ λ V eff = 2 π n a ( λ d ) 0.3 1 λ ( n λ ) 3 ,
ρ WGM ( λ ) ρ tot ( λ ) = 3 n 8 a ( λ d ) 0.3 .

Metrics