B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]
Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003).
[Crossref]
[PubMed]
W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller, “Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy,” Science 265, 364–367 (1994).
[Crossref]
[PubMed]
S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[Crossref]
B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]
Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003).
[Crossref]
[PubMed]
M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294, 1080–1082 (2000).
[Crossref]
K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306R (2004).
[Crossref]
K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[Crossref]
M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89, 253114 (2006).
[Crossref]
T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]
E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty,”Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity,” Appl. Phys. Lett. 89, 221104 (2006).
[Crossref]
M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89, 253114 (2006).
[Crossref]
V. Sandoghdar, B. C. Buchler, P. Kramper, S. Götzinger, O. Benson, and M. Kafesaki, “Scanning near-field optical studies of photonic devices,” Photonic Crystals (Wiley-VCH, Weinheim, Germany, 2004).
P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).
[Crossref]
[PubMed]
S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[Crossref]
K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306R (2004).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[Crossref]
A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the Resonance of a Photonic Crystal Microcavity by a Near-Field Probe,” Phys. Rev. Lett. 95, 153904 (2005).
[Crossref]
[PubMed]
V. Sandoghdar, B. C. Buchler, P. Kramper, S. Götzinger, O. Benson, and M. Kafesaki, “Scanning near-field optical studies of photonic devices,” Photonic Crystals (Wiley-VCH, Weinheim, Germany, 2004).
R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and H. Jäckel, “A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[Crossref]
E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty,”Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity,” Appl. Phys. Lett. 89, 221104 (2006).
[Crossref]
K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[Crossref]
K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[Crossref]
L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, “Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity,” Phys. Rev. B 76, 041102(R) (2007).
[Crossref]
E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty,”Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity,” Appl. Phys. Lett. 89, 221104 (2006).
[Crossref]
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref]
[PubMed]
L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, “Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity,” Phys. Rev. B 76, 041102(R) (2007).
[Crossref]
N. Louvion, A. Rahmani, C. Seassal, S. Callard, D. Gerard, and F. de Fornel, “Near-field observation of sub-wavelength confinement of photoluminescence by a photonic crystal microcavity,” Opt. Lett. 31, 2160–2162, (2006).
[Crossref]
[PubMed]
D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]
E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty,”Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity,” Appl. Phys. Lett. 89, 221104 (2006).
[Crossref]
R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and H. Jäckel, “A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[Crossref]
T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]
S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[Crossref]
T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]
H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[Crossref]
T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]
M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294, 1080–1082 (2000).
[Crossref]
H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[Crossref]
K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[Crossref]
W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller, “Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy,” Science 265, 364–367 (1994).
[Crossref]
[PubMed]
P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).
[Crossref]
[PubMed]
V. Sandoghdar, B. C. Buchler, P. Kramper, S. Götzinger, O. Benson, and M. Kafesaki, “Scanning near-field optical studies of photonic devices,” Photonic Crystals (Wiley-VCH, Weinheim, Germany, 2004).
L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, “Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity,” Phys. Rev. B 76, 041102(R) (2007).
[Crossref]
A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method. - 3rd ed. (Artech House, Norwood, MA, 2005).
R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and H. Jäckel, “A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[Crossref]
A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, “Experimental strategy in three-dimensional structure determination of crotoxin complex thin crystal,” Ultramicroscopy 13, 27–34, (1984).
[Crossref]
T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]
O. Hess, C. Hermann, and A. Klaedtke, “Finite-Difference Time-Domain simulations of photonic crystal defect structures,” Phys. Status Solidi A 197, 605–619 (2003).
[Crossref]
O. Hess, C. Hermann, and A. Klaedtke, “Finite-Difference Time-Domain simulations of photonic crystal defect structures,” Phys. Status Solidi A 197, 605–619 (2003).
[Crossref]
L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, “Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity,” Phys. Rev. B 76, 041102(R) (2007).
[Crossref]
A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, “Experimental strategy in three-dimensional structure determination of crotoxin complex thin crystal,” Ultramicroscopy 13, 27–34, (1984).
[Crossref]
R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and H. Jäckel, “A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[Crossref]
S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[Crossref]
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, N.J., 1995).
A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the Resonance of a Photonic Crystal Microcavity by a Near-Field Probe,” Phys. Rev. Lett. 95, 153904 (2005).
[Crossref]
[PubMed]
P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).
[Crossref]
[PubMed]
V. Sandoghdar, B. C. Buchler, P. Kramper, S. Götzinger, O. Benson, and M. Kafesaki, “Scanning near-field optical studies of photonic devices,” Photonic Crystals (Wiley-VCH, Weinheim, Germany, 2004).
W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller, “Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy,” Science 265, 364–367 (1994).
[Crossref]
[PubMed]
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref]
[PubMed]
O. Hess, C. Hermann, and A. Klaedtke, “Finite-Difference Time-Domain simulations of photonic crystal defect structures,” Phys. Status Solidi A 197, 605–619 (2003).
[Crossref]
R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and H. Jäckel, “A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[Crossref]
A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the Resonance of a Photonic Crystal Microcavity by a Near-Field Probe,” Phys. Rev. Lett. 95, 153904 (2005).
[Crossref]
[PubMed]
M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294, 1080–1082 (2000).
[Crossref]
P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).
[Crossref]
[PubMed]
V. Sandoghdar, B. C. Buchler, P. Kramper, S. Götzinger, O. Benson, and M. Kafesaki, “Scanning near-field optical studies of photonic devices,” Photonic Crystals (Wiley-VCH, Weinheim, Germany, 2004).
S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[Crossref]
H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[Crossref]
M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294, 1080–1082 (2000).
[Crossref]
T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]
T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]
L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, “Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity,” Phys. Rev. B 76, 041102(R) (2007).
[Crossref]
T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]
L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, “Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity,” Phys. Rev. B 76, 041102(R) (2007).
[Crossref]
D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref]
[PubMed]
T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]
A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, “Experimental strategy in three-dimensional structure determination of crotoxin complex thin crystal,” Ultramicroscopy 13, 27–34, (1984).
[Crossref]
M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[Crossref]
W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller, “Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy,” Science 265, 364–367 (1994).
[Crossref]
[PubMed]
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, N.J., 1995).
P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).
[Crossref]
[PubMed]
P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).
[Crossref]
[PubMed]
A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, “Experimental strategy in three-dimensional structure determination of crotoxin complex thin crystal,” Ultramicroscopy 13, 27–34, (1984).
[Crossref]
E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty,”Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity,” Appl. Phys. Lett. 89, 221104 (2006).
[Crossref]
B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]
Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003).
[Crossref]
[PubMed]
T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]
H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[Crossref]
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref]
[PubMed]
K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306R (2004).
[Crossref]
K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[Crossref]
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref]
[PubMed]
L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, “Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity,” Phys. Rev. B 76, 041102(R) (2007).
[Crossref]
L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, “Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity,” Phys. Rev. B 76, 041102(R) (2007).
[Crossref]
T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]
D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]
M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[Crossref]
R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and H. Jäckel, “A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[Crossref]
I. Gerhardt, G. Wrigge, M. Agio, P. Bushev, G. Zumofen, and V. Sandoghdar, “Scanning near-field optical coherent spectroscopy of single molecules at 1.4K,” Opt. Lett. 32, 1420–1422 (2007).
[Crossref]
[PubMed]
A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the Resonance of a Photonic Crystal Microcavity by a Near-Field Probe,” Phys. Rev. Lett. 95, 153904 (2005).
[Crossref]
[PubMed]
R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and H. Jäckel, “A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[Crossref]
P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).
[Crossref]
[PubMed]
V. Sandoghdar, “Trends and developments in scanning near-field optical microscopy,” pp. 65–119, Nanometer Scale Science and Technology, (IOS Press, Amsterdam, 2001).
V. Sandoghdar, B. C. Buchler, P. Kramper, S. Götzinger, O. Benson, and M. Kafesaki, “Scanning near-field optical studies of photonic devices,” Photonic Crystals (Wiley-VCH, Weinheim, Germany, 2004).
M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[Crossref]
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref]
[PubMed]
T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]
T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[Crossref]
Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003).
[Crossref]
[PubMed]
B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]
P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).
[Crossref]
[PubMed]
K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306R (2004).
[Crossref]
K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[Crossref]
R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and H. Jäckel, “A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[Crossref]
A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method. - 3rd ed. (Artech House, Norwood, MA, 2005).
E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty,”Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity,” Appl. Phys. Lett. 89, 221104 (2006).
[Crossref]
T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]
T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]
E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty,”Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity,” Appl. Phys. Lett. 89, 221104 (2006).
[Crossref]
M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294, 1080–1082 (2000).
[Crossref]
H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[Crossref]
H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[Crossref]
L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, “Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity,” Phys. Rev. B 76, 041102(R) (2007).
[Crossref]
T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]
S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[Crossref]
P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).
[Crossref]
[PubMed]
E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty,”Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity,” Appl. Phys. Lett. 89, 221104 (2006).
[Crossref]
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, N.J., 1995).
R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and H. Jäckel, “A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[Crossref]
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref]
[PubMed]
D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]
R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and H. Jäckel, “A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides,” Appl. Phys. Lett. 87, 261110 (2005).
[Crossref]
K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[Crossref]
E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty,”Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity,” Appl. Phys. Lett. 89, 221104 (2006).
[Crossref]
S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[Crossref]
M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[Crossref]
M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89, 253114 (2006).
[Crossref]
T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003).
[Crossref]
B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]
T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]
K. Vahala, “Optical Microcavities,” Nature 424, 839 (2003).
[Crossref]
[PubMed]
Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003).
[Crossref]
[PubMed]
S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[Crossref]
I. Märki, M. Salt, and H.-P. Herzig, “Tuning the resonance of a photonic crystal microcavity with an AFM probe,” Opt. Express 14, 2969–2978 (2006).
[Crossref]
[PubMed]
W. C. L. Hopman, K. O. van der Werf, A. J. F. Hollink, W. Bogaerts, V. Subramaniam, and R. M. de Ridder, “Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance,” Opt. Express 14, 8745–8752 (2006).
[Crossref]
[PubMed]
I. Gerhardt, G. Wrigge, M. Agio, P. Bushev, G. Zumofen, and V. Sandoghdar, “Scanning near-field optical coherent spectroscopy of single molecules at 1.4K,” Opt. Lett. 32, 1420–1422 (2007).
[Crossref]
[PubMed]
R. Herrmann, T. Suenner, T. Hein, A. Löffler, M. Kamp, and A. Forchel, “Ultrahigh-quality photonic crystal cavity in GaAs,” Opt. Lett. 31, 1229–1231 (2006).
[Crossref]
[PubMed]
N. Louvion, A. Rahmani, C. Seassal, S. Callard, D. Gerard, and F. de Fornel, “Near-field observation of sub-wavelength confinement of photoluminescence by a photonic crystal microcavity,” Opt. Lett. 31, 2160–2162, (2006).
[Crossref]
[PubMed]
P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 174–176 (2004).
[Crossref]
[PubMed]
K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306R (2004).
[Crossref]
L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, “Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity,” Phys. Rev. B 76, 041102(R) (2007).
[Crossref]
A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the Resonance of a Photonic Crystal Microcavity by a Near-Field Probe,” Phys. Rev. Lett. 95, 153904 (2005).
[Crossref]
[PubMed]
H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[Crossref]
O. Hess, C. Hermann, and A. Klaedtke, “Finite-Difference Time-Domain simulations of photonic crystal defect structures,” Phys. Status Solidi A 197, 605–619 (2003).
[Crossref]
W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller, “Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy,” Science 265, 364–367 (1994).
[Crossref]
[PubMed]
M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294, 1080–1082 (2000).
[Crossref]
O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1821 (1999).
[Crossref]
[PubMed]
A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, “Experimental strategy in three-dimensional structure determination of crotoxin complex thin crystal,” Ultramicroscopy 13, 27–34, (1984).
[Crossref]
V. Sandoghdar, “Trends and developments in scanning near-field optical microscopy,” pp. 65–119, Nanometer Scale Science and Technology, (IOS Press, Amsterdam, 2001).
C. M. Soukoulis, ed., Photonic band gap materials, (Kluwer, Dordrecht, 1996).
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, N.J., 1995).
V. Sandoghdar, B. C. Buchler, P. Kramper, S. Götzinger, O. Benson, and M. Kafesaki, “Scanning near-field optical studies of photonic devices,” Photonic Crystals (Wiley-VCH, Weinheim, Germany, 2004).
A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method. - 3rd ed. (Artech House, Norwood, MA, 2005).