Abstract

We present a self-starting passively mode-locked fiber laser operating in the chirped-pulse regime for the first time. A chirped fiber Bragg grating in the cavity provides positive dispersion with negligible nonlinearity. The laser generates positively-chirped pulses with a pulse duration of 22 ps at a repetition rate of 44 MHz, which are compressible down to 1.5 ps. We believe that the presented approach reveals a pulse energy scaling potential of mode-locked fiber lasers as nonlinear effects are significantly diminished compared the other known operation regimes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Akhmediev, and A. Ankiewicz, Dissipative solitons (Springer-Verlag, Berlin, 2005).
    [CrossRef]
  2. I. N. DulingIII, "All-fiber ring soliton laser mode locked with a nonlinear mirror," Opt. Lett. 16, 539 (1991).
    [CrossRef]
  3. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum Electron. 31, 591 (1995).
    [CrossRef]
  4. K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149 (1994).
    [CrossRef]
  5. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 61, 277 (1997).
    [CrossRef]
  6. B. Ortaç, J. Limpert, and A. Tünnermann, "High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime," Opt. Lett. 32, 2149 (2007).
    [CrossRef] [PubMed]
  7. V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, "Stretched pulse Yb3+: silica fiber laser," Opt. Lett. 30, 1888 (1997).
  8. B. Ortaç, A. Hideur, T. Chartier, M. Brunel, C. Özkul, and F. Sanchez, "90 fs generation from a stretched-pulse ytterbium doped fiber laser," Opt. Lett. 28, 1305 (2003).
    [CrossRef] [PubMed]
  9. F. Ö. Ilday, J. Buckley, H. Lim, F. W. Wise, and W. Clark, "Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser," Opt. Lett. 28, 1365 (2003).
    [CrossRef] [PubMed]
  10. A. C. Peacock, V. I. Kruglov, B. C. Thomsen, J. D. Harvey, M. E. Fermann, G. Sucha, D. Harter, and J. M. Dudley, "Generation and interaction of parabolic pulses in high gain fiber amplifiers and oscillators," OFC 2001, Anaheim, paper WP4, March 2001.
  11. F. Ö. Ilday, J. Buckley, W. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 91, 213902 (2004).
    [CrossRef]
  12. C. K. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346 (2005).
    [CrossRef] [PubMed]
  13. B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63 (2006).
    [CrossRef]
  14. R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893 (2004).
    [CrossRef]
  15. A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal dispersion femtosecond fiber laser," Opt. Express 14, 10095 (2006).
    [CrossRef] [PubMed]
  16. A. Chong, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32, 2408 (2007).
    [CrossRef] [PubMed]
  17. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, "High-energy femtosecond Yb-doped dispersion compensation free fiber laser," Opt. Express 15, 10725 (2007).
    [CrossRef] [PubMed]
  18. S. Naumov, A. Fernandez, R. Graf, P. Dombi, K. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
    [CrossRef]
  19. B. Proctor, E. Westwig, and F. Wise, "Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion," Opt. Lett. 18, 1654 (1993).
    [CrossRef] [PubMed]

2007

2006

A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal dispersion femtosecond fiber laser," Opt. Express 14, 10095 (2006).
[CrossRef] [PubMed]

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63 (2006).
[CrossRef]

2005

S. Naumov, A. Fernandez, R. Graf, P. Dombi, K. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

C. K. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346 (2005).
[CrossRef] [PubMed]

2004

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893 (2004).
[CrossRef]

F. Ö. Ilday, J. Buckley, W. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

2003

1997

V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, "Stretched pulse Yb3+: silica fiber laser," Opt. Lett. 30, 1888 (1997).

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 61, 277 (1997).
[CrossRef]

1995

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

1994

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149 (1994).
[CrossRef]

1993

1991

Apolonski, A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, K. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Brunel, M.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63 (2006).
[CrossRef]

B. Ortaç, A. Hideur, T. Chartier, M. Brunel, C. Özkul, and F. Sanchez, "90 fs generation from a stretched-pulse ytterbium doped fiber laser," Opt. Lett. 28, 1305 (2003).
[CrossRef] [PubMed]

Buckley, J.

Cautaerts, V.

Chartier, T.

Chedot, C.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63 (2006).
[CrossRef]

Chong, A.

Clark, W.

F. Ö. Ilday, J. Buckley, W. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

F. Ö. Ilday, J. Buckley, H. Lim, F. W. Wise, and W. Clark, "Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser," Opt. Lett. 28, 1365 (2003).
[CrossRef] [PubMed]

Dombi, P.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, K. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Duling, I. N.

Fernandez, A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, K. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Graf, R.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, K. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Hanna, D. C.

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 61, 277 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149 (1994).
[CrossRef]

Herda, R.

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893 (2004).
[CrossRef]

Hideur, A.

Hohmuth, R.

Ilday, F. Ö.

F. Ö. Ilday, J. Buckley, W. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

F. Ö. Ilday, J. Buckley, H. Lim, F. W. Wise, and W. Clark, "Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser," Opt. Lett. 28, 1365 (2003).
[CrossRef] [PubMed]

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 61, 277 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149 (1994).
[CrossRef]

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 61, 277 (1997).
[CrossRef]

Krausz, K.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, K. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Lim, H.

Limpert, J.

Martel, G.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63 (2006).
[CrossRef]

Naumov, S.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, K. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 61, 277 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149 (1994).
[CrossRef]

Nielsen, C. K.

Okhotnikov, O. G.

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893 (2004).
[CrossRef]

Ortaç, B.

Özkul, C.

Paschotta, R.

Proctor, B.

Renninger, W.

Richardson, D. J.

Richter, W.

Sanchez, F.

Schmidt, O.

Schreiber, T.

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 61, 277 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149 (1994).
[CrossRef]

Tünnermann, A.

Westwig, E.

Wise, F.

Wise, F. W.

F. Ö. Ilday, J. Buckley, W. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

F. Ö. Ilday, J. Buckley, H. Lim, F. W. Wise, and W. Clark, "Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser," Opt. Lett. 28, 1365 (2003).
[CrossRef] [PubMed]

Appl. Phys. B

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 61, 277 (1997).
[CrossRef]

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63 (2006).
[CrossRef]

Appl. Phys. Lett.

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149 (1994).
[CrossRef]

IEEE J. Quantum Electron.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893 (2004).
[CrossRef]

New J. Phys.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, K. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

F. Ö. Ilday, J. Buckley, W. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 91, 213902 (2004).
[CrossRef]

Other

A. C. Peacock, V. I. Kruglov, B. C. Thomsen, J. D. Harvey, M. E. Fermann, G. Sucha, D. Harter, and J. M. Dudley, "Generation and interaction of parabolic pulses in high gain fiber amplifiers and oscillators," OFC 2001, Anaheim, paper WP4, March 2001.

N. Akhmediev, and A. Ankiewicz, Dissipative solitons (Springer-Verlag, Berlin, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic representation of the passively mode-locked Yb-doped polarization-maintaining chirped-pulse fiber laser. PM: polarization-maintaining; SAM: saturable absorber mirror; CFBG: chirped fiber Bragg grating.

Fig. 2.
Fig. 2.

Oscilloscope trace of mode-locked pulse train generated by chirped-pulse fiber oscillator.

Fig. 3.
Fig. 3.

Measured optical spectrum from fiber oscillator at output 1 on a semi-logarithmic scale.

Fig. 4.
Fig. 4.

Autocorrelation trace of the chirped-pulses (a) linear scale and (b) log. scale observed directly at the laser output 1.

Fig. 5.
Fig. 5.

Autocorrelation trace of the extra-cavity compressed pulses at highest pump power (solid line) compared to the transform-limited pulse (dashed line).

Metrics