Abstract

The signal intensity in near infrared autofluorescence and polarization sensitive light scattering imaging is explored as a function of tissue thickness using homogeneous porcine cardiac tissue samples as a model system. Eight images are recorded from each tissue sample including two autofluorescence images obtained under 408 nm and 633 nm excitation and six light scattering images acquired with alternating linear polarization orientations (parallel or perpendicular) under 700 nm, 850 nm, and 1000 nm linearly polarized illumination. The mean image intensity of each sample for each imaging method is plotted as a function of tissue thickness. The experimental results indicate a strong dependence of the detected signal on tissue thickness up to approximately 2 mm. Furthermore, the intensity of the spectral ratio images also exhibit thickness-dependent changes up to about 3 mm. The behavior of the light scattering experimental data was reproduced using a mathematical model based on a modified version of the random walk theory of photon migration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, M. Alfano, "Laser-induced fluorescence spectroscopy from native cancerous and normal tissue," IEEE J. Quantum Electron 20, 1507-1511 (1984).
    [CrossRef]
  2. R. Richards-Kortum, "Quantitative Optical Spectroscopy for Tissue Diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
    [CrossRef] [PubMed]
  3. G. A. Wagnieres, W. M. Star, and B. C. Wilson, "In vivo fluorescence spectroscopy and imaging for oncological applications," Photochem. Photobiol. 68, 603-632 (1998).
    [PubMed]
  4. S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, "Advances in Optical Spectroscopy and Imaging of Breast Lesions," J. Mammary Gland Biol. 11, 165-181 (2006).
    [CrossRef]
  5. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada "Spectroscopic diagnosis of bladder cancer with elastic light scattering," Lasers Surg. Med. 17, 350-357 (1995).
    [CrossRef] [PubMed]
  6. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron 9, 243-256 (2003).
    [CrossRef]
  7. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
    [CrossRef] [PubMed]
  8. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637 (1999)
    [CrossRef]
  9. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998)
    [CrossRef]
  10. S. G. Demos and R. R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155 (1997).
    [CrossRef] [PubMed]
  11. S. G. Demos, H. B. Radousky, and R. R. Alfano, "Deep subsurface imaging in tissues using spectral and polarization filtering," Opt Express 7, 23-28 (2000).
    [CrossRef] [PubMed]
  12. G. N. Stamatas, M. Southall, and N. Kollias, "In vivo monitoring of cutaneous edema using spectral imaging in the visible and near infrared," J. Invest. Dermatol. 126, 1753-1760 (2006).
    [CrossRef] [PubMed]
  13. M. Hassan, R. F. Little, A. Vogel, K. Aleman, K. Wyvill, R. Yarchoan, and A. H. Gandjbakhche, "Quantitative assessment of tumor vasculature and response to therapy in Kaposi's sarcoma using functional noninvasive imaging," Technol. Cancer Res. T 3,451-457 (2004).
  14. C. A. Lieber, S. Urayama, N. Rahim, R. Tu, R. Saroufeem, B. Reubner, and S. G. Demos, "Multimodal near infrared spectral imaging as an exploratory tool for dysplastic esophageal lesion identification," Opt Express 14, 2211-2219 (2006).
    [CrossRef] [PubMed]
  15. S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, "Time resolved degree of polarization for human breast tissue," Opt. Commun. 124. 439-442 (1996).
    [CrossRef]
  16. G. H. Weiss, A. H. Gandjbakhche, and J. Masoliver, "Isotropization length for random-walk models of photon migration in turbid media," J. Mod. Opt. 42, 1567-1574 (1995).
    [CrossRef]
  17. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Experimental test of theoretical models for time-resolved reflectance," Med. Phys. 23, 1625 (1996).
    [CrossRef] [PubMed]
  18. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, New York, 1992).
  19. A. H. Gandjbakhche, R. F. Bonner, A. E. Arai, R. S. Balaban, "Visible-light photon migration through myocardium in vivo," Am. J. Physiol-Heart C. 277, H698-H704 (1999).
  20. J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403-409 (2003).
    [CrossRef] [PubMed]
  21. V. K. Ramshesh and S. B. Knisley, "Spatial localization of cardiac optical mapping with multiphoton excitation," J. Biomed. Opt. 8, 253-259 (2003).
    [CrossRef] [PubMed]
  22. S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. D. White, "Near-infrared autofluorescence imaging for detection of cancer," J. Biomed. Opt. 9, 587-592 (2004).
    [CrossRef] [PubMed]
  23. S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Laser Surg. Med. 26, 119-129 (2000).
    [CrossRef]

2006

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, "Advances in Optical Spectroscopy and Imaging of Breast Lesions," J. Mammary Gland Biol. 11, 165-181 (2006).
[CrossRef]

G. N. Stamatas, M. Southall, and N. Kollias, "In vivo monitoring of cutaneous edema using spectral imaging in the visible and near infrared," J. Invest. Dermatol. 126, 1753-1760 (2006).
[CrossRef] [PubMed]

C. A. Lieber, S. Urayama, N. Rahim, R. Tu, R. Saroufeem, B. Reubner, and S. G. Demos, "Multimodal near infrared spectral imaging as an exploratory tool for dysplastic esophageal lesion identification," Opt Express 14, 2211-2219 (2006).
[CrossRef] [PubMed]

2004

M. Hassan, R. F. Little, A. Vogel, K. Aleman, K. Wyvill, R. Yarchoan, and A. H. Gandjbakhche, "Quantitative assessment of tumor vasculature and response to therapy in Kaposi's sarcoma using functional noninvasive imaging," Technol. Cancer Res. T 3,451-457 (2004).

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. D. White, "Near-infrared autofluorescence imaging for detection of cancer," J. Biomed. Opt. 9, 587-592 (2004).
[CrossRef] [PubMed]

2003

J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403-409 (2003).
[CrossRef] [PubMed]

V. K. Ramshesh and S. B. Knisley, "Spatial localization of cardiac optical mapping with multiphoton excitation," J. Biomed. Opt. 8, 253-259 (2003).
[CrossRef] [PubMed]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron 9, 243-256 (2003).
[CrossRef]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

2000

S. G. Demos, H. B. Radousky, and R. R. Alfano, "Deep subsurface imaging in tissues using spectral and polarization filtering," Opt Express 7, 23-28 (2000).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Laser Surg. Med. 26, 119-129 (2000).
[CrossRef]

1999

1998

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998)
[CrossRef]

G. A. Wagnieres, W. M. Star, and B. C. Wilson, "In vivo fluorescence spectroscopy and imaging for oncological applications," Photochem. Photobiol. 68, 603-632 (1998).
[PubMed]

1997

1996

R. Richards-Kortum, "Quantitative Optical Spectroscopy for Tissue Diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef] [PubMed]

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, "Time resolved degree of polarization for human breast tissue," Opt. Commun. 124. 439-442 (1996).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Experimental test of theoretical models for time-resolved reflectance," Med. Phys. 23, 1625 (1996).
[CrossRef] [PubMed]

1995

G. H. Weiss, A. H. Gandjbakhche, and J. Masoliver, "Isotropization length for random-walk models of photon migration in turbid media," J. Mod. Opt. 42, 1567-1574 (1995).
[CrossRef]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada "Spectroscopic diagnosis of bladder cancer with elastic light scattering," Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef] [PubMed]

1984

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, M. Alfano, "Laser-induced fluorescence spectroscopy from native cancerous and normal tissue," IEEE J. Quantum Electron 20, 1507-1511 (1984).
[CrossRef]

Aleman, K.

M. Hassan, R. F. Little, A. Vogel, K. Aleman, K. Wyvill, R. Yarchoan, and A. H. Gandjbakhche, "Quantitative assessment of tumor vasculature and response to therapy in Kaposi's sarcoma using functional noninvasive imaging," Technol. Cancer Res. T 3,451-457 (2004).

Alfano, M.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, M. Alfano, "Laser-induced fluorescence spectroscopy from native cancerous and normal tissue," IEEE J. Quantum Electron 20, 1507-1511 (1984).
[CrossRef]

Alfano, R. R.

S. G. Demos, H. B. Radousky, and R. R. Alfano, "Deep subsurface imaging in tissues using spectral and polarization filtering," Opt Express 7, 23-28 (2000).
[CrossRef] [PubMed]

S. G. Demos and R. R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155 (1997).
[CrossRef] [PubMed]

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, "Time resolved degree of polarization for human breast tissue," Opt. Commun. 124. 439-442 (1996).
[CrossRef]

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, M. Alfano, "Laser-induced fluorescence spectroscopy from native cancerous and normal tissue," IEEE J. Quantum Electron 20, 1507-1511 (1984).
[CrossRef]

Andersson-Engels, S.

J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403-409 (2003).
[CrossRef] [PubMed]

Backman, V.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron 9, 243-256 (2003).
[CrossRef]

Backman, V. M.

Bigio, I. J.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada "Spectroscopic diagnosis of bladder cancer with elastic light scattering," Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef] [PubMed]

Boiko, I.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

Boyer, J.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada "Spectroscopic diagnosis of bladder cancer with elastic light scattering," Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef] [PubMed]

Chen, K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron 9, 243-256 (2003).
[CrossRef]

Collier, T.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

Conn, R. L.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada "Spectroscopic diagnosis of bladder cancer with elastic light scattering," Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef] [PubMed]

Cordero, J.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, M. Alfano, "Laser-induced fluorescence spectroscopy from native cancerous and normal tissue," IEEE J. Quantum Electron 20, 1507-1511 (1984).
[CrossRef]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Experimental test of theoretical models for time-resolved reflectance," Med. Phys. 23, 1625 (1996).
[CrossRef] [PubMed]

Demos, S. G.

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, "Advances in Optical Spectroscopy and Imaging of Breast Lesions," J. Mammary Gland Biol. 11, 165-181 (2006).
[CrossRef]

C. A. Lieber, S. Urayama, N. Rahim, R. Tu, R. Saroufeem, B. Reubner, and S. G. Demos, "Multimodal near infrared spectral imaging as an exploratory tool for dysplastic esophageal lesion identification," Opt Express 14, 2211-2219 (2006).
[CrossRef] [PubMed]

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. D. White, "Near-infrared autofluorescence imaging for detection of cancer," J. Biomed. Opt. 9, 587-592 (2004).
[CrossRef] [PubMed]

S. G. Demos, H. B. Radousky, and R. R. Alfano, "Deep subsurface imaging in tissues using spectral and polarization filtering," Opt Express 7, 23-28 (2000).
[CrossRef] [PubMed]

S. G. Demos and R. R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155 (1997).
[CrossRef] [PubMed]

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, "Time resolved degree of polarization for human breast tissue," Opt. Commun. 124. 439-442 (1996).
[CrossRef]

Drezek, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

Eick, A. A.

Feld, M. S.

Fitzmaurice, M.

Follen, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

Freyer, J. P.

Gandjbakhche, A. H.

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, "Advances in Optical Spectroscopy and Imaging of Breast Lesions," J. Mammary Gland Biol. 11, 165-181 (2006).
[CrossRef]

M. Hassan, R. F. Little, A. Vogel, K. Aleman, K. Wyvill, R. Yarchoan, and A. H. Gandjbakhche, "Quantitative assessment of tumor vasculature and response to therapy in Kaposi's sarcoma using functional noninvasive imaging," Technol. Cancer Res. T 3,451-457 (2004).

G. H. Weiss, A. H. Gandjbakhche, and J. Masoliver, "Isotropization length for random-walk models of photon migration in turbid media," J. Mod. Opt. 42, 1567-1574 (1995).
[CrossRef]

Gandour-Edwards, R.

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. D. White, "Near-infrared autofluorescence imaging for detection of cancer," J. Biomed. Opt. 9, 587-592 (2004).
[CrossRef] [PubMed]

Goldberg, M. J.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron 9, 243-256 (2003).
[CrossRef]

Guillaud, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

Hassan, M.

M. Hassan, R. F. Little, A. Vogel, K. Aleman, K. Wyvill, R. Yarchoan, and A. H. Gandjbakhche, "Quantitative assessment of tumor vasculature and response to therapy in Kaposi's sarcoma using functional noninvasive imaging," Technol. Cancer Res. T 3,451-457 (2004).

Heerdt, A. S.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, "Time resolved degree of polarization for human breast tissue," Opt. Commun. 124. 439-442 (1996).
[CrossRef]

Hielscher, A. H.

Jacques, S. L.

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Laser Surg. Med. 26, 119-129 (2000).
[CrossRef]

Johnson, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada "Spectroscopic diagnosis of bladder cancer with elastic light scattering," Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef] [PubMed]

Johnson, T. M.

Kim, Y. L.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron 9, 243-256 (2003).
[CrossRef]

Knisley, S. B.

V. K. Ramshesh and S. B. Knisley, "Spatial localization of cardiac optical mapping with multiphoton excitation," J. Biomed. Opt. 8, 253-259 (2003).
[CrossRef] [PubMed]

Kollias, N.

G. N. Stamatas, M. Southall, and N. Kollias, "In vivo monitoring of cutaneous edema using spectral imaging in the visible and near infrared," J. Invest. Dermatol. 126, 1753-1760 (2006).
[CrossRef] [PubMed]

Kromin, A. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron 9, 243-256 (2003).
[CrossRef]

Lee, K.

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Laser Surg. Med. 26, 119-129 (2000).
[CrossRef]

Lieber, C. A.

C. A. Lieber, S. Urayama, N. Rahim, R. Tu, R. Saroufeem, B. Reubner, and S. G. Demos, "Multimodal near infrared spectral imaging as an exploratory tool for dysplastic esophageal lesion identification," Opt Express 14, 2211-2219 (2006).
[CrossRef] [PubMed]

Little, R. F.

M. Hassan, R. F. Little, A. Vogel, K. Aleman, K. Wyvill, R. Yarchoan, and A. H. Gandjbakhche, "Quantitative assessment of tumor vasculature and response to therapy in Kaposi's sarcoma using functional noninvasive imaging," Technol. Cancer Res. T 3,451-457 (2004).

Liu, Y.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron 9, 243-256 (2003).
[CrossRef]

Longo, F.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, M. Alfano, "Laser-induced fluorescence spectroscopy from native cancerous and normal tissue," IEEE J. Quantum Electron 20, 1507-1511 (1984).
[CrossRef]

Macaulay, C.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

Malpica, A.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

Manoharan, R.

Masoliver, J.

G. H. Weiss, A. H. Gandjbakhche, and J. Masoliver, "Isotropization length for random-walk models of photon migration in turbid media," J. Mod. Opt. 42, 1567-1574 (1995).
[CrossRef]

Mourant, J. R.

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998)
[CrossRef]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada "Spectroscopic diagnosis of bladder cancer with elastic light scattering," Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef] [PubMed]

Olsson, S. B.

J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403-409 (2003).
[CrossRef] [PubMed]

Palsson, S.

J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403-409 (2003).
[CrossRef] [PubMed]

Perelman, L. T.

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Experimental test of theoretical models for time-resolved reflectance," Med. Phys. 23, 1625 (1996).
[CrossRef] [PubMed]

Platonov, P.

J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403-409 (2003).
[CrossRef] [PubMed]

Radousky, H. B.

S. G. Demos, H. B. Radousky, and R. R. Alfano, "Deep subsurface imaging in tissues using spectral and polarization filtering," Opt Express 7, 23-28 (2000).
[CrossRef] [PubMed]

Rahim, N.

C. A. Lieber, S. Urayama, N. Rahim, R. Tu, R. Saroufeem, B. Reubner, and S. G. Demos, "Multimodal near infrared spectral imaging as an exploratory tool for dysplastic esophageal lesion identification," Opt Express 14, 2211-2219 (2006).
[CrossRef] [PubMed]

Ramsamooj, R.

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. D. White, "Near-infrared autofluorescence imaging for detection of cancer," J. Biomed. Opt. 9, 587-592 (2004).
[CrossRef] [PubMed]

Ramshesh, V. K.

V. K. Ramshesh and S. B. Knisley, "Spatial localization of cardiac optical mapping with multiphoton excitation," J. Biomed. Opt. 8, 253-259 (2003).
[CrossRef] [PubMed]

Reubner, B.

C. A. Lieber, S. Urayama, N. Rahim, R. Tu, R. Saroufeem, B. Reubner, and S. G. Demos, "Multimodal near infrared spectral imaging as an exploratory tool for dysplastic esophageal lesion identification," Opt Express 14, 2211-2219 (2006).
[CrossRef] [PubMed]

Richards-Kortum, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

R. Richards-Kortum, "Quantitative Optical Spectroscopy for Tissue Diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef] [PubMed]

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Laser Surg. Med. 26, 119-129 (2000).
[CrossRef]

Roy, H. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron 9, 243-256 (2003).
[CrossRef]

Saroufeem, R.

C. A. Lieber, S. Urayama, N. Rahim, R. Tu, R. Saroufeem, B. Reubner, and S. G. Demos, "Multimodal near infrared spectral imaging as an exploratory tool for dysplastic esophageal lesion identification," Opt Express 14, 2211-2219 (2006).
[CrossRef] [PubMed]

Savage, H.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, "Time resolved degree of polarization for human breast tissue," Opt. Commun. 124. 439-442 (1996).
[CrossRef]

Schantz, S.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, "Time resolved degree of polarization for human breast tissue," Opt. Commun. 124. 439-442 (1996).
[CrossRef]

Shen, D.

Shimada, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada "Spectroscopic diagnosis of bladder cancer with elastic light scattering," Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef] [PubMed]

Southall, M.

G. N. Stamatas, M. Southall, and N. Kollias, "In vivo monitoring of cutaneous edema using spectral imaging in the visible and near infrared," J. Invest. Dermatol. 126, 1753-1760 (2006).
[CrossRef] [PubMed]

Stamatas, G. N.

G. N. Stamatas, M. Southall, and N. Kollias, "In vivo monitoring of cutaneous edema using spectral imaging in the visible and near infrared," J. Invest. Dermatol. 126, 1753-1760 (2006).
[CrossRef] [PubMed]

Star, W. M.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, "In vivo fluorescence spectroscopy and imaging for oncological applications," Photochem. Photobiol. 68, 603-632 (1998).
[PubMed]

Swartling, J.

J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403-409 (2003).
[CrossRef] [PubMed]

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Experimental test of theoretical models for time-resolved reflectance," Med. Phys. 23, 1625 (1996).
[CrossRef] [PubMed]

Tata, D.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, M. Alfano, "Laser-induced fluorescence spectroscopy from native cancerous and normal tissue," IEEE J. Quantum Electron 20, 1507-1511 (1984).
[CrossRef]

Tomashefsky, P.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, M. Alfano, "Laser-induced fluorescence spectroscopy from native cancerous and normal tissue," IEEE J. Quantum Electron 20, 1507-1511 (1984).
[CrossRef]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Experimental test of theoretical models for time-resolved reflectance," Med. Phys. 23, 1625 (1996).
[CrossRef] [PubMed]

Tu, R.

C. A. Lieber, S. Urayama, N. Rahim, R. Tu, R. Saroufeem, B. Reubner, and S. G. Demos, "Multimodal near infrared spectral imaging as an exploratory tool for dysplastic esophageal lesion identification," Opt Express 14, 2211-2219 (2006).
[CrossRef] [PubMed]

Urayama, S.

C. A. Lieber, S. Urayama, N. Rahim, R. Tu, R. Saroufeem, B. Reubner, and S. G. Demos, "Multimodal near infrared spectral imaging as an exploratory tool for dysplastic esophageal lesion identification," Opt Express 14, 2211-2219 (2006).
[CrossRef] [PubMed]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Experimental test of theoretical models for time-resolved reflectance," Med. Phys. 23, 1625 (1996).
[CrossRef] [PubMed]

Van Dam, J.

Vogel, A.

M. Hassan, R. F. Little, A. Vogel, K. Aleman, K. Wyvill, R. Yarchoan, and A. H. Gandjbakhche, "Quantitative assessment of tumor vasculature and response to therapy in Kaposi's sarcoma using functional noninvasive imaging," Technol. Cancer Res. T 3,451-457 (2004).

Vogel, A. J.

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, "Advances in Optical Spectroscopy and Imaging of Breast Lesions," J. Mammary Gland Biol. 11, 165-181 (2006).
[CrossRef]

Wagnieres, G. A.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, "In vivo fluorescence spectroscopy and imaging for oncological applications," Photochem. Photobiol. 68, 603-632 (1998).
[PubMed]

Wali, R. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron 9, 243-256 (2003).
[CrossRef]

Weiss, G. H.

G. H. Weiss, A. H. Gandjbakhche, and J. Masoliver, "Isotropization length for random-walk models of photon migration in turbid media," J. Mod. Opt. 42, 1567-1574 (1995).
[CrossRef]

White, R. D.

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. D. White, "Near-infrared autofluorescence imaging for detection of cancer," J. Biomed. Opt. 9, 587-592 (2004).
[CrossRef] [PubMed]

Wilson, B. C.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, "In vivo fluorescence spectroscopy and imaging for oncological applications," Photochem. Photobiol. 68, 603-632 (1998).
[PubMed]

Wyvill, K.

M. Hassan, R. F. Little, A. Vogel, K. Aleman, K. Wyvill, R. Yarchoan, and A. H. Gandjbakhche, "Quantitative assessment of tumor vasculature and response to therapy in Kaposi's sarcoma using functional noninvasive imaging," Technol. Cancer Res. T 3,451-457 (2004).

Yarchoan, R.

M. Hassan, R. F. Little, A. Vogel, K. Aleman, K. Wyvill, R. Yarchoan, and A. H. Gandjbakhche, "Quantitative assessment of tumor vasculature and response to therapy in Kaposi's sarcoma using functional noninvasive imaging," Technol. Cancer Res. T 3,451-457 (2004).

Zonios, G.

Annu. Rev. Phys. Chem.

R. Richards-Kortum, "Quantitative Optical Spectroscopy for Tissue Diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef] [PubMed]

Appl. Opt.

IEEE J. Quantum Electron

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, M. Alfano, "Laser-induced fluorescence spectroscopy from native cancerous and normal tissue," IEEE J. Quantum Electron 20, 1507-1511 (1984).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron 9, 243-256 (2003).
[CrossRef]

J. Biomed. Opt.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003).
[CrossRef] [PubMed]

V. K. Ramshesh and S. B. Knisley, "Spatial localization of cardiac optical mapping with multiphoton excitation," J. Biomed. Opt. 8, 253-259 (2003).
[CrossRef] [PubMed]

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. D. White, "Near-infrared autofluorescence imaging for detection of cancer," J. Biomed. Opt. 9, 587-592 (2004).
[CrossRef] [PubMed]

J. Invest. Dermatol.

G. N. Stamatas, M. Southall, and N. Kollias, "In vivo monitoring of cutaneous edema using spectral imaging in the visible and near infrared," J. Invest. Dermatol. 126, 1753-1760 (2006).
[CrossRef] [PubMed]

J. Mammary Gland Biol.

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, "Advances in Optical Spectroscopy and Imaging of Breast Lesions," J. Mammary Gland Biol. 11, 165-181 (2006).
[CrossRef]

J. Mod. Opt.

G. H. Weiss, A. H. Gandjbakhche, and J. Masoliver, "Isotropization length for random-walk models of photon migration in turbid media," J. Mod. Opt. 42, 1567-1574 (1995).
[CrossRef]

Laser Surg. Med.

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Laser Surg. Med. 26, 119-129 (2000).
[CrossRef]

Lasers Surg. Med.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada "Spectroscopic diagnosis of bladder cancer with elastic light scattering," Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput.

J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403-409 (2003).
[CrossRef] [PubMed]

Med. Phys.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Experimental test of theoretical models for time-resolved reflectance," Med. Phys. 23, 1625 (1996).
[CrossRef] [PubMed]

Opt Express

S. G. Demos, H. B. Radousky, and R. R. Alfano, "Deep subsurface imaging in tissues using spectral and polarization filtering," Opt Express 7, 23-28 (2000).
[CrossRef] [PubMed]

C. A. Lieber, S. Urayama, N. Rahim, R. Tu, R. Saroufeem, B. Reubner, and S. G. Demos, "Multimodal near infrared spectral imaging as an exploratory tool for dysplastic esophageal lesion identification," Opt Express 14, 2211-2219 (2006).
[CrossRef] [PubMed]

Opt. Commun.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, "Time resolved degree of polarization for human breast tissue," Opt. Commun. 124. 439-442 (1996).
[CrossRef]

Photochem. Photobiol.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, "In vivo fluorescence spectroscopy and imaging for oncological applications," Photochem. Photobiol. 68, 603-632 (1998).
[PubMed]

Technol. Cancer Res. T

M. Hassan, R. F. Little, A. Vogel, K. Aleman, K. Wyvill, R. Yarchoan, and A. H. Gandjbakhche, "Quantitative assessment of tumor vasculature and response to therapy in Kaposi's sarcoma using functional noninvasive imaging," Technol. Cancer Res. T 3,451-457 (2004).

Other

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, New York, 1992).

A. H. Gandjbakhche, R. F. Bonner, A. E. Arai, R. S. Balaban, "Visible-light photon migration through myocardium in vivo," Am. J. Physiol-Heart C. 277, H698-H704 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

The 700 nm perpendicular polarization raw image of a 7.36 mm in thickness tissue sample. Note the tissue variability visible from the surface. The blue line in the center of the tissue outlines the region of interest used for data analysis.

Fig. 2.
Fig. 2.

Schematic layout of the experimental system used for the acquisition of the multispectral autofluorescence and light scattering images

Fig. 3.
Fig. 3.

Schematic of transmission spectroscopy experimental system.

Fig. 4.
Fig. 4.

The average intensities of the autofluorescence images of each sample obtained under a) 408 nm and b) 633 nm laser excitation as a function of the tissue thickness.

Fig. 5.
Fig. 5.

The average intensities of the backscattered polarized image components after passing through the narrow-band interference filter centered at a) 700 nm, b) 850 nm, and c) 1000 nm.

Fig. 6.
Fig. 6.

The measured intensity of the polarization-preserving component (I - I) at a) 700 nm, b) 850 nm, and c) 1000 nm as a function of tissue thickness.

Fig. 7.
Fig. 7.

The ratio of the average intensities of the perpendicular image components at a) 700 nm over 1000 nm, b) 700 nm over 850 nm, and c) 850 nm over 1000 nm.

Fig. 8.
Fig. 8.

The ratio of the average intensities of the parallel image components at a) 700 nm over 1000 nm, b) 700 nm over 850 nm, and c) 850 nm over 1000 nm.

Fig. 9.
Fig. 9.

Transmission spectra from a) 1.0 mm, 3.0 mm and 5.0 mm thick tissue samples normalized to 920 nm, and b) the average intensity of the transmitted signal at 600 nm, 650 nm, and 1000 nm as a function of tissue thickness.

Fig. 10.
Fig. 10.

Comparison between the total diffuse reflection (I+I- 0.03) as estimated from our experimental data and best fit with the model for a) 700 nm, b) 850 nm, and c) 1000 nm.

Fig. 11.
Fig. 11.

The slope of transport corrected scattering in log-log graph.

Fig. 12.
Fig. 12.

Estimate of µaµs’ plotted with coefficient reflectivity measurements.

Tables (2)

Tables Icon

Table 1. The value of the optical parameters as estimated using our modeling approach

Tables Icon

Table 2. Optical Coefficients, reported in the literature

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R ( μ ) = exp ( 2 μ ) 24 μ [ 1 exp ( 24 μ ) + 2 ( 1 cosh ( 24 μ ) ) exp ( L 24 μ ) 1 ]
R ( μ ) = exp ( 2 μ ) 24 μ [ 1 exp ( 24 μ ) ]
exp ( 6 μ a μ s ' L ) = exp ( 3 μ a μ s ' D )

Metrics