Abstract

The concept of Adaptive Optics Visual Simulation applies to the use of an Adaptive Optics system to manipulate ocular aberrations in order to perform visual testing through a modified optics. It can be of interest both to study the visual system and to design new ophthalmic optical elements. In this work, we describe an apparatus based on a liquid crystal programmable phase modulator and explore its capabilities as a tool in the early stages of the design of ophthalmic optical elements with increased depth of field for presbyopic subjects. To illustrate the potential of the instrument, we analyze the performance of two phase profiles obtained by a hybrid optimization procedure. The liquid crystal Adaptive Optics Visual Simulator can be used to experimentally record the point spread function for different vergences in order to objectively measure depth of focus, to perform different psychophysical experiments through the phase profile in order to measure its impact on visual performance, and to study the interaction with the eye’s particular aberrations. This approach could save several steps in current procedures of ophthalmic optical design and eventually lead to improved solutions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. W. Dreher, J. F. Bille, R. N. Weinreb, "Active optical depth resolution improvement of the laser tomographic scanner," Appl. Opt. 28, 804-808 (1989).
    [CrossRef] [PubMed]
  2. P. Artal, R. Navarro, "High-resolution imaging of the living human fovea: measurement of the intercenter cone distance by speckle interferometry," Opt. Lett. 14, 1098-1100 (1989).
    [CrossRef] [PubMed]
  3. LiangJ. , WilliamsD. R. , MillerD. T. , "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
    [CrossRef]
  4. F. Vargas-Martín, P. M. Prieto, P. Artal, "Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998).
    [CrossRef]
  5. E. J. Fernández, I. Iglesias, P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001).
    [CrossRef]
  6. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, "Improvement in retinal image quality with dynamic correction of the eye's aberrations," Opt. Express 8, 631-643 (2001).
    [CrossRef] [PubMed]
  7. P. J. W. Hands, S. A. Tatarkova, A. K. Kirby, G. D. Love, "Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells," Opt. Express 14, 4525-4537 (2006).
    [CrossRef] [PubMed]
  8. T. R. M. Sales, G. M. Morris, "Axial superresolution with phase-only pupil filters," Opt. Commun. 156, 227-230 (1998).
    [CrossRef]
  9. M. Martinez-Corral, M. T. Caballero, E. H. K. Stelzer, J. Swoger, "Tailoring the axial shape of the point spread function using the Toraldo concept," Opt. Express 10, 98-103 (2002).
    [PubMed]
  10. M. P. Cagigal, J. E. Oti, V. F. Canales, P. J. Valle, "Analytical design of superresolving phase filters," Opt. Commun. 241, 249-253 (2004).
    [CrossRef]
  11. E. J. Fernandez, S. Manzanera, P. Piers, P. Artal, "Adaptive optics visual simulator," J. Refrac. Surg. 18, S634-S638 (2002).
  12. P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, D. R. Williams, "Neural compensation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).
    [CrossRef]
  13. P. A. Piers, E. J. Fernández, S. Manzanera, S. Norrby, P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004)
    [CrossRef] [PubMed]
  14. P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, P. Artal, "The use of adaptive optics to determine the optimal ocular spherical aberration," J. Cataract Refr. Sur. 33, 1721-1726 (2007).
    [CrossRef]
  15. L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, P. Artal, "Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye," Opt. Express 15, 12654-12661 (2007).
    [CrossRef] [PubMed]
  16. P. M. Prieto, E. J. Fernandez, S. Manzanera, P. Artal, "Adaptive optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004).
    [CrossRef] [PubMed]
  17. E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
    [CrossRef] [PubMed]
  18. P. M. Prieto, F. Vargas-Martin, J. S. McLellan, S. A. Burns, "Effect of the polarization on ocular wave aberration measurements," J. Opt. Soc. Am. A 19, 809-814 (2002).
    [CrossRef]
  19. D. Miller, L. Thibos, X. Hong, "Requirements for segmented correctors for diffraction-limited performance in the human eye," Opt. Express 13, 275-289 (2005).
    [CrossRef] [PubMed]
  20. P. M. Prieto, F. Vargas-Martin, S. Goelz, P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
    [CrossRef]
  21. A. B. Djurisic, J. M. Elazar, A. D. Rakic, "Simulated-annealing-based genetic algorithm for modeling the optical constants of solids," Appl. Opt. 36, 7097-7103 (1997).
    [CrossRef]
  22. G. Zhou, Y. Chen, Z. Wang, H. Song, "Genetic local search algorithm for optimization design of diffractive optical elements," Appl. Opt. 38, 4281-4290 (1999).
    [CrossRef]
  23. D. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters," J. Soc. Ind. Appl. Math. 11, 431-441 (1963).
    [CrossRef]
  24. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003).
    [CrossRef]
  25. E. J. Fernandez, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
    [CrossRef] [PubMed]

2007

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, P. Artal, "The use of adaptive optics to determine the optimal ocular spherical aberration," J. Cataract Refr. Sur. 33, 1721-1726 (2007).
[CrossRef]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, P. Artal, "Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye," Opt. Express 15, 12654-12661 (2007).
[CrossRef] [PubMed]

2006

2005

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

D. Miller, L. Thibos, X. Hong, "Requirements for segmented correctors for diffraction-limited performance in the human eye," Opt. Express 13, 275-289 (2005).
[CrossRef] [PubMed]

E. J. Fernandez, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

2004

P. M. Prieto, E. J. Fernandez, S. Manzanera, P. Artal, "Adaptive optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004).
[CrossRef] [PubMed]

M. P. Cagigal, J. E. Oti, V. F. Canales, P. J. Valle, "Analytical design of superresolving phase filters," Opt. Commun. 241, 249-253 (2004).
[CrossRef]

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, D. R. Williams, "Neural compensation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).
[CrossRef]

P. A. Piers, E. J. Fernández, S. Manzanera, S. Norrby, P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004)
[CrossRef] [PubMed]

2003

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003).
[CrossRef]

2002

2001

2000

1999

1998

1997

1989

1963

D. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters," J. Soc. Ind. Appl. Math. 11, 431-441 (1963).
[CrossRef]

Appl. Opt.

Invest. Ophthalmol. Vis. Sci.

P. A. Piers, E. J. Fernández, S. Manzanera, S. Norrby, P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004)
[CrossRef] [PubMed]

J. Cataract Refr. Sur.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, P. Artal, "The use of adaptive optics to determine the optimal ocular spherical aberration," J. Cataract Refr. Sur. 33, 1721-1726 (2007).
[CrossRef]

J. Opt. Soc. Am. A

J. Refrac. Surg.

E. J. Fernandez, S. Manzanera, P. Piers, P. Artal, "Adaptive optics visual simulator," J. Refrac. Surg. 18, S634-S638 (2002).

J. Soc. Ind. Appl. Math.

D. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters," J. Soc. Ind. Appl. Math. 11, 431-441 (1963).
[CrossRef]

J. Vision

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, D. R. Williams, "Neural compensation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).
[CrossRef]

Opt. Commun.

T. R. M. Sales, G. M. Morris, "Axial superresolution with phase-only pupil filters," Opt. Commun. 156, 227-230 (1998).
[CrossRef]

M. P. Cagigal, J. E. Oti, V. F. Canales, P. J. Valle, "Analytical design of superresolving phase filters," Opt. Commun. 241, 249-253 (2004).
[CrossRef]

Opt. Express

E. J. Fernandez, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

M. Martinez-Corral, M. T. Caballero, E. H. K. Stelzer, J. Swoger, "Tailoring the axial shape of the point spread function using the Toraldo concept," Opt. Express 10, 98-103 (2002).
[PubMed]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, "Improvement in retinal image quality with dynamic correction of the eye's aberrations," Opt. Express 8, 631-643 (2001).
[CrossRef] [PubMed]

P. J. W. Hands, S. A. Tatarkova, A. K. Kirby, G. D. Love, "Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells," Opt. Express 14, 4525-4537 (2006).
[CrossRef] [PubMed]

D. Miller, L. Thibos, X. Hong, "Requirements for segmented correctors for diffraction-limited performance in the human eye," Opt. Express 13, 275-289 (2005).
[CrossRef] [PubMed]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, P. Artal, "Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye," Opt. Express 15, 12654-12661 (2007).
[CrossRef] [PubMed]

P. M. Prieto, E. J. Fernandez, S. Manzanera, P. Artal, "Adaptive optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Optom. Vision Sci.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003).
[CrossRef]

Vision Res.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Simplified scheme of the design procedure for new ophthalmic optics. Left: The current typical design loop requires days or months to be completed. Right: The AOVS allows the implementation of a design loop (red arrows) where a new idea can be tested or improved within minutes or hours. Additionally, it can be used to check the performance of eventual prototypes, supplying information about the manufacturing procedures (blue arrows).

Fig. 2.
Fig. 2.

Schematic view of the 633-nm illumination channel of the LC-AOVS used for alignment and calibration, and for experimental PSF recording. BS: Beam splitter; P1 and P2: Pupils. In light blue the elements not used in this configuration.

Fig. 3.
Fig. 3.

Schematic view of the IR channel of the LC-AOVS used for ocular aberration measurement and correction. In light blue the elements not used in this configuration.

Fig. 4.
Fig. 4.

Schematic view of the visual simulation channel of the LC-AOVS used for psychophysics experiments through a modified ocular optics. In light blue the elements not used in this configuration.

Fig. 5.
Fig. 5.

Multifocal profiles obtained by the hybrid optimization method. Panel (a): bifocal profile over a 2.4-mm pupil. Panel (b): trifocal profile over a 3.6-mm pupil. Panels (c) and (d): theoretical Strehl ratio for each profile (thick blue line) and for the naked eye (thin green line).

Fig. 6.
Fig. 6.

Experimental Strehl ratio (symbols) obtained from the recorded PSF images and theoretical calculations (lines) for the profiles in Figs. 5(a) (left panel) and 5(b) (right panel).

Fig. 7.
Fig. 7.

Examples of PSFs experimentally recorded for the bifocal (upper row) and trifocal (lower row) phase profiles. All images have been rescaled to the maximum intensity of the series. The colorbar is in normalized units. On top of each image, the vergence for which each PSF was obtained. In yellow, the Strehl ratio experimentally obtained in each case.

Fig. 8.
Fig. 8.

Plots in blue represent decimal acuity for word recognition for the naked eye (dashed line, triangles) and through the bifocal profile in Fig. 5(a) (solid line, circles). The psychophysical measurements were carried out in 0.5D steps. Error bars (wherever visible) represent standard deviation in three trials. For comparison purposes, we show the theoretical Strehl ratio for this phase profile as a dotted gray line. The scale between the vertical axes has been arbitrarily set to aid visual comparison of the different plots.

Fig. 9.
Fig. 9.

Decimal visual acuity for word recognition for the naked eye (dashed blue line, triangles), through the trifocal phase profile in Fig 5(b) (solid blue line, circles) and Strhel ratio for this profile (dotted gray line). For more details see caption to Fig. 8.

Fig. 10.
Fig. 10.

Customized phase profiles obtained by subtracting the subject’s aberrations. In front of the subject’s eye should be equivalent to presenting a perfect eye with the profile in Fig. 5(b).

Fig. 11.
Fig. 11.

Comparison between word recognition acuity for the customized trifocal phase profiles in Fig. 10 (blue line, squares) and the phase profile in Fig 5(b) (red line, circles). The latter plots were shown in Fig. 9. Error bars are the standard deviation in the three trials.

Metrics