Abstract

Dynamic in situ spectroscopic ellipsometry is used to probe post-deposition nano-structural changes in silver films at room temperature in the pre- and post-coalescence stages of Volmer-Weber growth. In the island growth phase the Maxwell-Garnett theory is used to determine structural changes in the island film. Changes in the plasmon resonance frequency indicate an increased distance between islands which explain pre-coalescence resistivity changes. Post-coalescence changes in the resistivity are determined to be due to grain growth. A reduction in film thickness of 0.2–0.3 nm is also observed. The results are used to evaluate recent competing theories based on in situ stress measurements.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Yamaguchi, "The resonance type absorption of very thin silver and gold films," J. Phys. Soc. Jpn. 15,1577-1585 (1960).
    [CrossRef]
  2. T. Yamaguchi, S. Yoshida, A. Kinbara, "Optical effect of substrate on anomalous absorption of aggregated silver film," Thin Solid Films,  21173-187 (1974).
    [CrossRef]
  3. U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer, Berlin 1995).
  4. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photon. 1,41-48 (2007).
    [CrossRef]
  5. M. Moskovits, "Surface-enhanced Raman spectroscopy: a brief retrospective," J. Raman Spectr. 36,485-496 (2005).
    [CrossRef]
  6. J. E. Morris and T. J. Coutts, "Electrical conduction in discontinuous metal films: A discussion," Thin Solid Films 47,3-65 (1977).
    [CrossRef]
  7. W. B. Phillips, E. A. Desloge, and J. G. Skofronick, "A mechanism to account for observed morphological changes in discontinuous gold films following deposition," J. Appl. Phys. 39,3210-3218 (1968).
    [CrossRef]
  8. M. Nishiura and A. Kinbara, "Resistance changes in discontinuous gold films," Thin Solid Films 24,79-87 (1974).
    [CrossRef]
  9. J. E. Morris, "Post deposition resistance changes in cermet and discontinuous thin films," Vacuum 22,153-155 (1972).
    [CrossRef]
  10. R. Abermann and R. Koch, "In situ determination of the structure of thin metal films by internal stress measurements," Thin Solid Films 66,217-232 (1980).
    [CrossRef]
  11. C. Polop, C. Rosiepen, S. Bleikamp, R. Drese, J. Mayer, A. Dimyati, and T. Michely, "The STM view of the initial stages of polycrystalline Ag film formation," New J. Phys. 9,74 (2007).
    [CrossRef]
  12. G. Renaud, R. Lazzari, C. Revenant, A. Barbier, M. Noblet, O. Ulrich, F. Leroy, J. Jupille, Y. Borensztein, C.R. Henry, J. Deville, F. Scheurer, J. Mane-Mane, and O. Fruchart, "Real-Time Monitoring of Growing Nanoparticles," Science 300,1416-1419 (2003).
    [CrossRef] [PubMed]
  13. R. Koch, "The intrinsic stress of polycrystalline and epitaxial thin metal films," J. Phys.: Condens. Matter 6, 9519-9550 (1994).
    [CrossRef]
  14. R. W. Hoffman, "Stresses in thin-films - Relevance of grain-boundaries and impurities," Thin Solid Films 34, 185-190 (1976).
    [CrossRef]
  15. T. W. H. Oates, J. Pigott, D. R. McKenzie, and M. M. M. Bilek, A high-current pulsed cathodic vacuum arc, Rev. Sci. Instr. 74,4750-4754 (2003).
  16. E. Byon, T. W. H. Oates, and A. Anders, Coalescence of nanometer silver islands on oxides grown by filtered cathodic arc deposition, Appl. Phys. Lett. 82, 1634-1636 (2003).
    [CrossRef]
  17. C. A. Neugebauer and M. B. Webb, "Electrical conduction mechanism in ultrathin evaporated metal films," J. Appl. Phys. 33, 74-82 (1962).
    [CrossRef]
  18. I. Ostadal and R. M. Hill, "DC conduction of stable ultrathin Pt films below the percolation threshold," Physical Review B 64, 033404 (2001).
    [CrossRef]
  19. A. G. Bishay, W. Fikry, H. Hunter, and H. F. Ragie, "Temperature coefficient of the surface resistivity of two-dimensional island gold films," J. Phys. D: Appl. Phys. 33,2218-2222 (2000).
    [CrossRef]
  20. J. G. Skofronick and W. B. Phillips, "Morphological changes in discontinuous gold films following deposition", J. Appl. Phys. 38,4791-4796 (1967).
    [CrossRef]
  21. P. Drude, "Electronic theory of metals I," Ann. der Physik 1,566-613 (1900).
    [CrossRef]
  22. P. B. Johnson and R. W. Christy, "Optical properties of the noble metals," Phys. Rev. B 6,4370-4379 (1972).
    [CrossRef]
  23. C. Kittel, Introduction to Solid State Physics, 7th ed. (John Wiley and Sons., New York, 1996).
  24. N. Schell, T. Jensen, J. H. Petersen, K. P. Andreasen, J. Bottiger, J. Chevallier, "The nanostructure evolution during and after magnetron deposition of Au films," Thin Solid Films 441,96-103 (2003).
    [CrossRef]
  25. J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Phil. Trans. R. Soc. London 203,385-420 (1904).
    [CrossRef]
  26. R. Doremus, "Optical absorption of island films of noble metals: wave length of the plasma absorption band," Thin Solid Films 326,205-210 (1998).
    [CrossRef]
  27. R. Koch and R. Abermann, "Microstructural changes in vapour-deposited silver, copper and gold films investigated by internal stress measurements" Thin Solid Films 140,217-226 (1986).
    [CrossRef]
  28. C. Friesen and C. V. Thompson, "Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth," Phys. Rev. Lett. 89,126103 (2002).
    [CrossRef] [PubMed]
  29. E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro, and S. J. Hearne, "Origin of Compressive Residual Stress in Polycrystalline Thin Films" Phys. Rev. Lett. 88,156103 (2002).
    [CrossRef] [PubMed]
  30. R. Koch, D. Hu, and A. K. Das, "Compressive stress in polycrystalline Volmer-Weber films," Phys. Rev. Lett. 95,229602 (2005).
    [CrossRef]
  31. C. Friesen and C. V. Thompson, "Comment on ‘‘Compressive stress in polycrystalline Volmer-Weber films,’’Phys. Rev. Lett. 95,229601 (2005).
    [CrossRef] [PubMed]
  32. R. Koch, D. Hu, and A. K. Das, "Koch, Hu, and Das Reply," Phys. Rev. Lett. 94,146101 (2005).
    [CrossRef] [PubMed]
  33. C. Friesen and C. V. Thompson, "Correlation of stress and atomic-scale surface roughness evolution during intermittent homoepitaxial growth of (111)-oriented Ag and Cu," Phys. Rev. Lett. 93, 056104 (2004).
    [CrossRef]

2007 (2)

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photon. 1,41-48 (2007).
[CrossRef]

C. Polop, C. Rosiepen, S. Bleikamp, R. Drese, J. Mayer, A. Dimyati, and T. Michely, "The STM view of the initial stages of polycrystalline Ag film formation," New J. Phys. 9,74 (2007).
[CrossRef]

2005 (4)

M. Moskovits, "Surface-enhanced Raman spectroscopy: a brief retrospective," J. Raman Spectr. 36,485-496 (2005).
[CrossRef]

R. Koch, D. Hu, and A. K. Das, "Compressive stress in polycrystalline Volmer-Weber films," Phys. Rev. Lett. 95,229602 (2005).
[CrossRef]

C. Friesen and C. V. Thompson, "Comment on ‘‘Compressive stress in polycrystalline Volmer-Weber films,’’Phys. Rev. Lett. 95,229601 (2005).
[CrossRef] [PubMed]

R. Koch, D. Hu, and A. K. Das, "Koch, Hu, and Das Reply," Phys. Rev. Lett. 94,146101 (2005).
[CrossRef] [PubMed]

2004 (1)

C. Friesen and C. V. Thompson, "Correlation of stress and atomic-scale surface roughness evolution during intermittent homoepitaxial growth of (111)-oriented Ag and Cu," Phys. Rev. Lett. 93, 056104 (2004).
[CrossRef]

2003 (4)

T. W. H. Oates, J. Pigott, D. R. McKenzie, and M. M. M. Bilek, A high-current pulsed cathodic vacuum arc, Rev. Sci. Instr. 74,4750-4754 (2003).

E. Byon, T. W. H. Oates, and A. Anders, Coalescence of nanometer silver islands on oxides grown by filtered cathodic arc deposition, Appl. Phys. Lett. 82, 1634-1636 (2003).
[CrossRef]

N. Schell, T. Jensen, J. H. Petersen, K. P. Andreasen, J. Bottiger, J. Chevallier, "The nanostructure evolution during and after magnetron deposition of Au films," Thin Solid Films 441,96-103 (2003).
[CrossRef]

G. Renaud, R. Lazzari, C. Revenant, A. Barbier, M. Noblet, O. Ulrich, F. Leroy, J. Jupille, Y. Borensztein, C.R. Henry, J. Deville, F. Scheurer, J. Mane-Mane, and O. Fruchart, "Real-Time Monitoring of Growing Nanoparticles," Science 300,1416-1419 (2003).
[CrossRef] [PubMed]

2002 (2)

C. Friesen and C. V. Thompson, "Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth," Phys. Rev. Lett. 89,126103 (2002).
[CrossRef] [PubMed]

E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro, and S. J. Hearne, "Origin of Compressive Residual Stress in Polycrystalline Thin Films" Phys. Rev. Lett. 88,156103 (2002).
[CrossRef] [PubMed]

2001 (1)

I. Ostadal and R. M. Hill, "DC conduction of stable ultrathin Pt films below the percolation threshold," Physical Review B 64, 033404 (2001).
[CrossRef]

2000 (1)

A. G. Bishay, W. Fikry, H. Hunter, and H. F. Ragie, "Temperature coefficient of the surface resistivity of two-dimensional island gold films," J. Phys. D: Appl. Phys. 33,2218-2222 (2000).
[CrossRef]

1998 (1)

R. Doremus, "Optical absorption of island films of noble metals: wave length of the plasma absorption band," Thin Solid Films 326,205-210 (1998).
[CrossRef]

1994 (1)

R. Koch, "The intrinsic stress of polycrystalline and epitaxial thin metal films," J. Phys.: Condens. Matter 6, 9519-9550 (1994).
[CrossRef]

1986 (1)

R. Koch and R. Abermann, "Microstructural changes in vapour-deposited silver, copper and gold films investigated by internal stress measurements" Thin Solid Films 140,217-226 (1986).
[CrossRef]

1980 (1)

R. Abermann and R. Koch, "In situ determination of the structure of thin metal films by internal stress measurements," Thin Solid Films 66,217-232 (1980).
[CrossRef]

1977 (1)

J. E. Morris and T. J. Coutts, "Electrical conduction in discontinuous metal films: A discussion," Thin Solid Films 47,3-65 (1977).
[CrossRef]

1976 (1)

R. W. Hoffman, "Stresses in thin-films - Relevance of grain-boundaries and impurities," Thin Solid Films 34, 185-190 (1976).
[CrossRef]

1974 (2)

T. Yamaguchi, S. Yoshida, A. Kinbara, "Optical effect of substrate on anomalous absorption of aggregated silver film," Thin Solid Films,  21173-187 (1974).
[CrossRef]

M. Nishiura and A. Kinbara, "Resistance changes in discontinuous gold films," Thin Solid Films 24,79-87 (1974).
[CrossRef]

1972 (2)

J. E. Morris, "Post deposition resistance changes in cermet and discontinuous thin films," Vacuum 22,153-155 (1972).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical properties of the noble metals," Phys. Rev. B 6,4370-4379 (1972).
[CrossRef]

1968 (1)

W. B. Phillips, E. A. Desloge, and J. G. Skofronick, "A mechanism to account for observed morphological changes in discontinuous gold films following deposition," J. Appl. Phys. 39,3210-3218 (1968).
[CrossRef]

1967 (1)

J. G. Skofronick and W. B. Phillips, "Morphological changes in discontinuous gold films following deposition", J. Appl. Phys. 38,4791-4796 (1967).
[CrossRef]

1962 (1)

C. A. Neugebauer and M. B. Webb, "Electrical conduction mechanism in ultrathin evaporated metal films," J. Appl. Phys. 33, 74-82 (1962).
[CrossRef]

1960 (1)

S. Yamaguchi, "The resonance type absorption of very thin silver and gold films," J. Phys. Soc. Jpn. 15,1577-1585 (1960).
[CrossRef]

1904 (1)

J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Phil. Trans. R. Soc. London 203,385-420 (1904).
[CrossRef]

1900 (1)

P. Drude, "Electronic theory of metals I," Ann. der Physik 1,566-613 (1900).
[CrossRef]

Ann. der Physik (1)

P. Drude, "Electronic theory of metals I," Ann. der Physik 1,566-613 (1900).
[CrossRef]

Appl. Phys. Lett. (1)

E. Byon, T. W. H. Oates, and A. Anders, Coalescence of nanometer silver islands on oxides grown by filtered cathodic arc deposition, Appl. Phys. Lett. 82, 1634-1636 (2003).
[CrossRef]

J. Appl. Phys. (3)

C. A. Neugebauer and M. B. Webb, "Electrical conduction mechanism in ultrathin evaporated metal films," J. Appl. Phys. 33, 74-82 (1962).
[CrossRef]

W. B. Phillips, E. A. Desloge, and J. G. Skofronick, "A mechanism to account for observed morphological changes in discontinuous gold films following deposition," J. Appl. Phys. 39,3210-3218 (1968).
[CrossRef]

J. G. Skofronick and W. B. Phillips, "Morphological changes in discontinuous gold films following deposition", J. Appl. Phys. 38,4791-4796 (1967).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

A. G. Bishay, W. Fikry, H. Hunter, and H. F. Ragie, "Temperature coefficient of the surface resistivity of two-dimensional island gold films," J. Phys. D: Appl. Phys. 33,2218-2222 (2000).
[CrossRef]

J. Phys. Soc. Jpn. (1)

S. Yamaguchi, "The resonance type absorption of very thin silver and gold films," J. Phys. Soc. Jpn. 15,1577-1585 (1960).
[CrossRef]

J. Phys.: Condens. Matter (1)

R. Koch, "The intrinsic stress of polycrystalline and epitaxial thin metal films," J. Phys.: Condens. Matter 6, 9519-9550 (1994).
[CrossRef]

J. Raman Spectr. (1)

M. Moskovits, "Surface-enhanced Raman spectroscopy: a brief retrospective," J. Raman Spectr. 36,485-496 (2005).
[CrossRef]

Nat. Photon. (1)

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photon. 1,41-48 (2007).
[CrossRef]

New J. Phys. (1)

C. Polop, C. Rosiepen, S. Bleikamp, R. Drese, J. Mayer, A. Dimyati, and T. Michely, "The STM view of the initial stages of polycrystalline Ag film formation," New J. Phys. 9,74 (2007).
[CrossRef]

Phil. Trans. R. Soc. London (1)

J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Phil. Trans. R. Soc. London 203,385-420 (1904).
[CrossRef]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, "Optical properties of the noble metals," Phys. Rev. B 6,4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett. (6)

C. Friesen and C. V. Thompson, "Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth," Phys. Rev. Lett. 89,126103 (2002).
[CrossRef] [PubMed]

E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro, and S. J. Hearne, "Origin of Compressive Residual Stress in Polycrystalline Thin Films" Phys. Rev. Lett. 88,156103 (2002).
[CrossRef] [PubMed]

R. Koch, D. Hu, and A. K. Das, "Compressive stress in polycrystalline Volmer-Weber films," Phys. Rev. Lett. 95,229602 (2005).
[CrossRef]

C. Friesen and C. V. Thompson, "Comment on ‘‘Compressive stress in polycrystalline Volmer-Weber films,’’Phys. Rev. Lett. 95,229601 (2005).
[CrossRef] [PubMed]

R. Koch, D. Hu, and A. K. Das, "Koch, Hu, and Das Reply," Phys. Rev. Lett. 94,146101 (2005).
[CrossRef] [PubMed]

C. Friesen and C. V. Thompson, "Correlation of stress and atomic-scale surface roughness evolution during intermittent homoepitaxial growth of (111)-oriented Ag and Cu," Phys. Rev. Lett. 93, 056104 (2004).
[CrossRef]

Physical Review B (1)

I. Ostadal and R. M. Hill, "DC conduction of stable ultrathin Pt films below the percolation threshold," Physical Review B 64, 033404 (2001).
[CrossRef]

Rev. Sci. Instr. (1)

T. W. H. Oates, J. Pigott, D. R. McKenzie, and M. M. M. Bilek, A high-current pulsed cathodic vacuum arc, Rev. Sci. Instr. 74,4750-4754 (2003).

Science (1)

G. Renaud, R. Lazzari, C. Revenant, A. Barbier, M. Noblet, O. Ulrich, F. Leroy, J. Jupille, Y. Borensztein, C.R. Henry, J. Deville, F. Scheurer, J. Mane-Mane, and O. Fruchart, "Real-Time Monitoring of Growing Nanoparticles," Science 300,1416-1419 (2003).
[CrossRef] [PubMed]

Thin Solid Films (8)

R. W. Hoffman, "Stresses in thin-films - Relevance of grain-boundaries and impurities," Thin Solid Films 34, 185-190 (1976).
[CrossRef]

R. Abermann and R. Koch, "In situ determination of the structure of thin metal films by internal stress measurements," Thin Solid Films 66,217-232 (1980).
[CrossRef]

M. Nishiura and A. Kinbara, "Resistance changes in discontinuous gold films," Thin Solid Films 24,79-87 (1974).
[CrossRef]

J. E. Morris and T. J. Coutts, "Electrical conduction in discontinuous metal films: A discussion," Thin Solid Films 47,3-65 (1977).
[CrossRef]

T. Yamaguchi, S. Yoshida, A. Kinbara, "Optical effect of substrate on anomalous absorption of aggregated silver film," Thin Solid Films,  21173-187 (1974).
[CrossRef]

N. Schell, T. Jensen, J. H. Petersen, K. P. Andreasen, J. Bottiger, J. Chevallier, "The nanostructure evolution during and after magnetron deposition of Au films," Thin Solid Films 441,96-103 (2003).
[CrossRef]

R. Doremus, "Optical absorption of island films of noble metals: wave length of the plasma absorption band," Thin Solid Films 326,205-210 (1998).
[CrossRef]

R. Koch and R. Abermann, "Microstructural changes in vapour-deposited silver, copper and gold films investigated by internal stress measurements" Thin Solid Films 140,217-226 (1986).
[CrossRef]

Vacuum (1)

J. E. Morris, "Post deposition resistance changes in cermet and discontinuous thin films," Vacuum 22,153-155 (1972).
[CrossRef]

Other (2)

U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer, Berlin 1995).

C. Kittel, Introduction to Solid State Physics, 7th ed. (John Wiley and Sons., New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Measured resistance (black squares) of the film near the percolation threshold. During the deposition (dashed boxes) the resistance drops markedly. During the subsequent relaxation pauses the resistance changes slowly. Before percolation (blue box at 565s) the resistance increases during the pauses. After percolation the resistance decreases. Also shown is the temperature measured at the rear surface of the substrate (red line).

Fig. 2.
Fig. 2.

Ellipsometric parameters, Ψ and Δ, at 3 representative frequencies. 399 frequencies were recorded in total.

Fig. 3.
Fig. 3.

(a). Experimental and fitted ellipsometric parameters, Ψ and Δ, as a function of the photon energy. Experimental data for time t=95s (blue triangles) are fitted by the Maxwell-Garnett Theory with the Drude model for silver (black lines). Experimental data for time t=950s (red squares) are fitted by the Drude model (black lines).

Fig. 4.
Fig. 4.

(a). Measured DC resistance (black squares) and resistance determined from the ellipsometric data using the Drude model (red circles) and b) film thickness from the ellipsometric fits at the end of the deposition. Time is defined as the number of seconds since the first deposition.

Fig. 5.
Fig. 5.

Variable parameters from the MGT fitting. (a) thickness, d, (b) Fill factor, F and (c) broadening parameter, Γ, and the (e) real, ε1 , and (d) imaginary, ε2 , parts of the dielectric function as a function of time for the first four deposition bursts and the subsequent relaxation periods. The resonance energy, which is directly proportional to F, is included as an alternative scale in (b). (Note (d) is truncated below values of 2 for better contrast.)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε ˜ ( ω ) = ε ω p 2 ω 2 + i Γ ω
ρ = Γ m * N e 2
ε ˜ ε ˜ m ε ˜ + 2 ε ˜ m = F ε ˜ p ε ˜ m ε ˜ p + 2 ε ˜ m

Metrics