Abstract

The impact of Higher-Order Mode content on beam quality in large mode area fibers supporting several guided modes is carefully investigated. It is shown that even excellent beam quality (M2 < 1.1) in LMA fibers does not guarantee low HOM content, and that the presence of HOMs can lead to significant uncontrollable changes in beam quality, peak intensity, and pointing uncertainty that depend on the uncontrollable relative phase of the modes in the fiber.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000).
    [CrossRef]
  2. A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B 38, S681-S693 (2005).
    [CrossRef]
  3. M. Ferman, "Single mode excitation of multimode fibers with ultrashort pulses," Opt. Lett. 23, 52-54 (1998).
    [CrossRef]
  4. J. M. Fini, "Bend-resistant design of conventional and microstructure fibers with very large mode area," Opt. Express 14, 69-81 (2006).
    [CrossRef] [PubMed]
  5. J. M. Fini, "Bend-compensated design of large mode area fibers," Opt. Lett. 31, 1963-1965 (2006).
    [CrossRef] [PubMed]
  6. J. R. Marciante, "Radial index tailoring for reduced intermodal coupling in large mode area fiber lasers and amplifiers," presented at Conference on Lasers and Elecro-Optics, Baltimore, MD, 6-11 May 2007.
  7. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Light propagation with ultra-large modal areas in optical fibers," Opt. Lett. 31, 1797-1799 (2006).
    [CrossRef] [PubMed]
  8. A. E. Siegman, "How to (maybe) measure laser beam quality," OSA TOPS 17, 184-199 (1998).
  9. S. Ramachandran, J. W. Nicholson, S. Ghalmi, and M. F. Yan, "Measurement of multipath interference in the coherent crosstalk regime," IEEE Photon, Technol. Lett. 15, 1171-1173 (2003).
    [CrossRef]

2006

2005

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B 38, S681-S693 (2005).
[CrossRef]

2003

S. Ramachandran, J. W. Nicholson, S. Ghalmi, and M. F. Yan, "Measurement of multipath interference in the coherent crosstalk regime," IEEE Photon, Technol. Lett. 15, 1171-1173 (2003).
[CrossRef]

2000

1998

M. Ferman, "Single mode excitation of multimode fibers with ultrashort pulses," Opt. Lett. 23, 52-54 (1998).
[CrossRef]

A. E. Siegman, "How to (maybe) measure laser beam quality," OSA TOPS 17, 184-199 (1998).

Dimarcello, F. V.

Ferman, M.

Fini, J. M.

Ghalmi, S.

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Light propagation with ultra-large modal areas in optical fibers," Opt. Lett. 31, 1797-1799 (2006).
[CrossRef] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, and M. F. Yan, "Measurement of multipath interference in the coherent crosstalk regime," IEEE Photon, Technol. Lett. 15, 1171-1173 (2003).
[CrossRef]

Goldberg, L.

Hofer, S.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B 38, S681-S693 (2005).
[CrossRef]

Kliner, D. A. V.

Koplow, J. P.

Liem, A.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B 38, S681-S693 (2005).
[CrossRef]

Limpert, J.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B 38, S681-S693 (2005).
[CrossRef]

Monberg, E.

Nicholson, J. W.

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Light propagation with ultra-large modal areas in optical fibers," Opt. Lett. 31, 1797-1799 (2006).
[CrossRef] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, and M. F. Yan, "Measurement of multipath interference in the coherent crosstalk regime," IEEE Photon, Technol. Lett. 15, 1171-1173 (2003).
[CrossRef]

Nolte, S.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B 38, S681-S693 (2005).
[CrossRef]

Ramachandran, S.

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Light propagation with ultra-large modal areas in optical fibers," Opt. Lett. 31, 1797-1799 (2006).
[CrossRef] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, and M. F. Yan, "Measurement of multipath interference in the coherent crosstalk regime," IEEE Photon, Technol. Lett. 15, 1171-1173 (2003).
[CrossRef]

Roser, F.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B 38, S681-S693 (2005).
[CrossRef]

Schreiber, T.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B 38, S681-S693 (2005).
[CrossRef]

Siegman, A. E.

A. E. Siegman, "How to (maybe) measure laser beam quality," OSA TOPS 17, 184-199 (1998).

Tunnermann, A.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B 38, S681-S693 (2005).
[CrossRef]

Wisk, P.

Yan, M. F.

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Light propagation with ultra-large modal areas in optical fibers," Opt. Lett. 31, 1797-1799 (2006).
[CrossRef] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, and M. F. Yan, "Measurement of multipath interference in the coherent crosstalk regime," IEEE Photon, Technol. Lett. 15, 1171-1173 (2003).
[CrossRef]

Zellmer, H.

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B 38, S681-S693 (2005).
[CrossRef]

IEEE Photon, Technol. Lett.

S. Ramachandran, J. W. Nicholson, S. Ghalmi, and M. F. Yan, "Measurement of multipath interference in the coherent crosstalk regime," IEEE Photon, Technol. Lett. 15, 1171-1173 (2003).
[CrossRef]

J. Phys. B

A. Tunnermann, T. Schreiber, F. Roser, A. Liem, S. Hofer, H. Zellmer, S. Nolte, and J. Limpert, "The renaissance and bright future of fiber lasers," J. Phys. B 38, S681-S693 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

OSA TOPS

A. E. Siegman, "How to (maybe) measure laser beam quality," OSA TOPS 17, 184-199 (1998).

Other

J. R. Marciante, "Radial index tailoring for reduced intermodal coupling in large mode area fiber lasers and amplifiers," presented at Conference on Lasers and Elecro-Optics, Baltimore, MD, 6-11 May 2007.

Supplementary Material (1)

» Media 1: AVI (1365 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Bend loss vs bend radius for the modes of a 0.065 NA fiber with a 50-μm-core.

Fig. 2.
Fig. 2.

Near- and far-field intensity patterns for the LP01 and LP11 modes of the reference fiber.

Fig. 3.
Fig. 3.

Near- and far-field intensity patterns for an LP01-LP11 superposition with 30% LP11 for the two limiting cases of the relative modal phase.

Fig. 4.
Fig. 4.

M2 for different LP01-LP11 superpositions. (a) shows M2 as a function of LP11 fraction for the two limiting-case relative modal phases, and (b) shows M2 as a function of relative phase for a range of LP11 fractions.

Fig. 5.
Fig. 5.

Position of the near- and far-field centroids of the intensity pattern as a function of relative modal phase for different LP01-LP11 superpositions. The different curves in each graph represent different LP11 fractions.

Fig. 6.
Fig. 6.

Near- and far-field spatial peak intensity as a function of relative modal phase for different LP01-LP11 superpositions. The different curves in each graph represent different LP11 fractions.

Fig. 7.
Fig. 7.

(1.37 MB) Movie showing how the far-field intensity pattern changes with LP01-LP11 relative modal phase for 30% LP11 fraction. M 2 remains good in all cases (between 1.08 and 1.35), although the peak intensity changes by 50% and the position of the centroid moves by nearly a beam radius. [Media 1]

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E near field = A LP 11 e i Δ ϕ Ψ LP 11 + 1 A LP 11 Ψ LP 01 ,
σ 2 = ( x x 0 ) 2 I ( x , y ) dx dy I ( x , y ) dx dy ,
W 2 ( z ) = W 0 2 + M 4 ( λ π W 0 ) 2 ( z z 0 ) 2 .
M 2 = π W 0 W ( z ) z λ ,
Δλ λ 2 2 π Δ n eff L ,

Metrics