Abstract

We report a significant advance in preform extrusion and die design, which has allowed for the first time the fabrication of complex structured preforms using soft glass and polymer billets. Structural preform distortions are minimized by adjustment of the material flow within the die. The low propagation loss of an extruded complex bismuth glass fiber demonstrates the potential of this advanced extrusion technique for the fabrication of novel soft glass and polymer microstructured fiber designs.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Monro and H. Ebendorff-Heidepriem, "Progress in microstructured optical fibers," Annu. Rev. Mater. Res. 36, 467-495 (2006).
    [CrossRef]
  2. M. C. J. Large, S. Ponratham, A. Argyros, I. Bassett, N. S. Punjari, F. Cox, G. W. Barton, and M. A. von Eijkelenborg, "Microstructured polymer optical fibers: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
    [CrossRef]
  3. Y. Zhang, K. Li, L. Wang, L. Ren, W. Zhao, R. Miao, M. J. C. Large, and M. A. van Eijkelenborg, "Casting preforms for microstructured polymer optical fiber fabrication," Opt. Express 14, 5541-5547 (2006).
    [CrossRef] [PubMed]
  4. Z. Guiyao, H. Zhiyon, L. Shuguang, and H. Lantian, "Fabrication of glass photonic crystal fibers with a die-cast process," Appl. Opt. 45, 4433-4436 (2006).
    [CrossRef] [PubMed]
  5. P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Frampton, R. C. Moore, and D. J. Richardson, "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers," Opt. Express 11, 3568-3573 (2003).
    [CrossRef] [PubMed]
  6. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, D. J.  Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12, 5082-5087 (2004).
    [CrossRef] [PubMed]
  7. X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson "Extruded single-mode, high-nonlinearity tellurite glass holey fiber," Electron. Lett. 41, 835-837 (2005).
    [CrossRef]
  8. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E.  Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, "High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation," J. Lightwave Technol.  24, 183-190 (2006).
    [CrossRef]
  9. H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, "Extruded high-NA microstructured polymer optical fiber," Opt. Commun. 273, 133-137 (2007).
    [CrossRef]
  10. E. Roeder, "Flow behaviour of glass during extrusion," J. Non. Cryst. Solids 7, 203-220 (1972).
    [CrossRef]
  11. A. Argyros, M. A. van Eijkelenborg, M. C. J. Large, and I. M. Bassett, "Hollow-core microstructured polymer optical fiber," Opt. Lett. 31, 172-174 (2006).
    [CrossRef] [PubMed]
  12. H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, "Reduced loss in extruded micorstructured optical fiber," Proc. Australian Conference on Fibre Technology, Melbourne (Australia), paper P20 (2007).

2007

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, "Extruded high-NA microstructured polymer optical fiber," Opt. Commun. 273, 133-137 (2007).
[CrossRef]

2006

2005

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson "Extruded single-mode, high-nonlinearity tellurite glass holey fiber," Electron. Lett. 41, 835-837 (2005).
[CrossRef]

2004

2003

1972

E. Roeder, "Flow behaviour of glass during extrusion," J. Non. Cryst. Solids 7, 203-220 (1972).
[CrossRef]

Argyros, A.

M. C. J. Large, S. Ponratham, A. Argyros, I. Bassett, N. S. Punjari, F. Cox, G. W. Barton, and M. A. von Eijkelenborg, "Microstructured polymer optical fibers: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

A. Argyros, M. A. van Eijkelenborg, M. C. J. Large, and I. M. Bassett, "Hollow-core microstructured polymer optical fiber," Opt. Lett. 31, 172-174 (2006).
[CrossRef] [PubMed]

Asimakis, S.

Barton, G. W.

M. C. J. Large, S. Ponratham, A. Argyros, I. Bassett, N. S. Punjari, F. Cox, G. W. Barton, and M. A. von Eijkelenborg, "Microstructured polymer optical fibers: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

Bassett, I.

M. C. J. Large, S. Ponratham, A. Argyros, I. Bassett, N. S. Punjari, F. Cox, G. W. Barton, and M. A. von Eijkelenborg, "Microstructured polymer optical fibers: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

Bassett, I. M.

Cox, F.

M. C. J. Large, S. Ponratham, A. Argyros, I. Bassett, N. S. Punjari, F. Cox, G. W. Barton, and M. A. von Eijkelenborg, "Microstructured polymer optical fibers: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

Ebendorff-Heidepriem, H.

Feng, X.

Finazzi, V.

Frampton, K.

Frampton, K. E.

Guiyao, Z.

Lantian, H.

Large, M. C. J.

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, "Extruded high-NA microstructured polymer optical fiber," Opt. Commun. 273, 133-137 (2007).
[CrossRef]

A. Argyros, M. A. van Eijkelenborg, M. C. J. Large, and I. M. Bassett, "Hollow-core microstructured polymer optical fiber," Opt. Lett. 31, 172-174 (2006).
[CrossRef] [PubMed]

M. C. J. Large, S. Ponratham, A. Argyros, I. Bassett, N. S. Punjari, F. Cox, G. W. Barton, and M. A. von Eijkelenborg, "Microstructured polymer optical fibers: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

Large, M. J. C.

Leong, J. Y. Y.

Li, K.

Miao, R.

Monro, T. M.

Moore, R. C.

Petropoulos, P.

Ponratham, S.

M. C. J. Large, S. Ponratham, A. Argyros, I. Bassett, N. S. Punjari, F. Cox, G. W. Barton, and M. A. von Eijkelenborg, "Microstructured polymer optical fibers: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

Price, J. H. V.

Punjari, N. S.

M. C. J. Large, S. Ponratham, A. Argyros, I. Bassett, N. S. Punjari, F. Cox, G. W. Barton, and M. A. von Eijkelenborg, "Microstructured polymer optical fibers: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

Ren, L.

Richardson, D. J.

Roeder, E.

E. Roeder, "Flow behaviour of glass during extrusion," J. Non. Cryst. Solids 7, 203-220 (1972).
[CrossRef]

Shuguang, L.

van Eijkelenborg, M. A.

von Eijkelenborg, M. A.

M. C. J. Large, S. Ponratham, A. Argyros, I. Bassett, N. S. Punjari, F. Cox, G. W. Barton, and M. A. von Eijkelenborg, "Microstructured polymer optical fibers: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

Wang, L.

Zhang, Y.

Zhao, W.

Zhiyon, H.

Annu. Rev. Mater. Res.

T. M. Monro and H. Ebendorff-Heidepriem, "Progress in microstructured optical fibers," Annu. Rev. Mater. Res. 36, 467-495 (2006).
[CrossRef]

Appl. Opt.

Electron. Lett.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson "Extruded single-mode, high-nonlinearity tellurite glass holey fiber," Electron. Lett. 41, 835-837 (2005).
[CrossRef]

J. Lightwave Technol.

J. Non. Cryst. Solids

E. Roeder, "Flow behaviour of glass during extrusion," J. Non. Cryst. Solids 7, 203-220 (1972).
[CrossRef]

Mol. Cryst. Liq. Cryst.

M. C. J. Large, S. Ponratham, A. Argyros, I. Bassett, N. S. Punjari, F. Cox, G. W. Barton, and M. A. von Eijkelenborg, "Microstructured polymer optical fibers: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

Opt. Commun.

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, "Extruded high-NA microstructured polymer optical fiber," Opt. Commun. 273, 133-137 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, "Reduced loss in extruded micorstructured optical fiber," Proc. Australian Conference on Fibre Technology, Melbourne (Australia), paper P20 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Sketch of extrusion process and (b) extrusion die concepts with equal and different size feed holes for a target preform structure having 60 holes (4 rings), white filled circles are blocking elements, black and red circles are feed holes.

Fig. 2.
Fig. 2.

Hole type classification and labeling for transverse preform structures containing air holes arranged on a hexagonal lattice.

Fig. 3.
Fig. 3.

Photographs of extruded preforms. (a), (e) and (f) lead silicate glass; (b) bismuth glass; (c) and (d) polymer. The bars refer to 2mm.

Fig. 4.
Fig. 4.

(a). Transverse profiles of targeted and measured preform structures and (b) measured position and shape of holes in preforms and fiber.

Fig. 5.
Fig. 5.

Propagation loss and cross-sectional image of bismuth fiber with 3 rings of holes.

Metrics