Abstract

We describe the optimization of a Frequency Locked Loop (FLL) in an atomic clock which is based on Coherent Population Trapping (CPT) in 87Rb vapor using the D2 transition. The FLL uses frequency modulation (FM) spectroscopy and we study the effect of FM parameters (modulation frequency and index) on the sensitivity and the signal to noise ratio of the feedback signal in the FLL. The clock which employs a small spherical glass cell containing 87Rb atoms and a buffer gas, exhibits a short term stability of 3×10-11/√τ. The long term relative frequency stability of the 10 MHz output is better than 10-10 with a drift of 10-11 per day.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Characterization of coherent population-trapping resonances as atomic frequency references

Svenja Knappe, Robert Wynands, John Kitching, Hugh G. Robinson, and Leo Hollberg
J. Opt. Soc. Am. B 18(11) 1545-1553 (2001)

A chip-scale atomic clock based on 87Rb with improved frequency stability

S. Knappe, P.D.D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland
Opt. Express 13(4) 1249-1253 (2005)

Atomic-based stabilization for laser-pumped atomic clocks

V. Gerginov, V. Shah, S. Knappe, L. Hollberg, and J. Kitching
Opt. Lett. 31(12) 1851-1853 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
    [Crossref]
  2. S. Knappe, P.D.D. Schwindt, V. Shah, L. Liew, J. Moreland, L. Hollberg, and J. Kitching, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. express 13, 1249–1253 (2005).
    [Crossref] [PubMed]
  3. R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M. Peake, “The MAC - a Miniature Atomic Clock,” in proceedings of 2005 Joint IEEE International Frequency Control (UFFC) Symposium and the 37th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, D. Coler, ed. (Vancouver, BC, Canada, 2005), pp. 752–757.
  4. R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, and G. M. Peake, “The Miniature Atomic Clock-Pre-Production Results,” in proceedings of TimeNav’07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.
  5. N. Cyr, M. Têtu, and M. Breton, “All-optical microwave frequency standard: a proposal,” IEEE Trans. Instrum. Meas. 42, 640–649 (1993).
    [Crossref]
  6. D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 67, 2141–2143 (1995).
    [Crossref]
  7. V. Gerginov, V. Shah, S. Knappe, P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Atom-based stabilization for laser-pumped atomic clocks,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), D. Coler, ed. (Braunschweig, Germany, 2006), pp. 224–228.
  8. I. Ben-Aroya, M. Kahanov, and G. Eisenstein, “A CPT based 87Rb atomic clock employing a small spherical glass vapor cell”, in Proceedings of the 38th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, L. A. Breakiron, ed. (Reston, VA, USA, 2006), pp. 259–270.
  9. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy - Theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B. 32, 145–152 (1983).
    [Crossref]
  10. M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited frequency-modulation spectroscopy,” J. Opt. Soc. Am. B. 2, 1510–1526 (1985).
    [Crossref]
  11. R. Wynands and A. Nagel, “Inversion of frequency-modulation spectroscopy line shapes,” J. Opt. Soc. Am. B. 16, 1617–1622 (1999).
    [Crossref]
  12. J. Kitching, H. G. Robinson, L. Hollberg, S. Knappe, and R. Wynands, “Optical-noise in laser-pumped, all-optical microwave frequency references,” J. Opt. Soc. Am. B. 18, 1676–1683 (2001).
    [Crossref]
  13. J. Kitching, S. Knappe, N. Vukicevic, L. Hollberg, R. Wynands, and W. Wiedmann, “A microwave frequency reference based on VCSEL-driven dark lineresonances in Cs vapor,” IEEE Trans. Instrum. Meas. 49, 1313–1317 (2000).
    [Crossref]
  14. D. F. Phillips, I. Novikova, C. Y.-T. Wang, R. L. Walsworth, and M. Crescimanno, “Modulation-induced frequency shifts in a coherent-population-trapping-based atomic clock,” J. Opt. Soc. Am. B. 22, 305–310 (2005).
    [Crossref]

2005 (3)

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

S. Knappe, P.D.D. Schwindt, V. Shah, L. Liew, J. Moreland, L. Hollberg, and J. Kitching, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. express 13, 1249–1253 (2005).
[Crossref] [PubMed]

D. F. Phillips, I. Novikova, C. Y.-T. Wang, R. L. Walsworth, and M. Crescimanno, “Modulation-induced frequency shifts in a coherent-population-trapping-based atomic clock,” J. Opt. Soc. Am. B. 22, 305–310 (2005).
[Crossref]

2001 (1)

J. Kitching, H. G. Robinson, L. Hollberg, S. Knappe, and R. Wynands, “Optical-noise in laser-pumped, all-optical microwave frequency references,” J. Opt. Soc. Am. B. 18, 1676–1683 (2001).
[Crossref]

2000 (1)

J. Kitching, S. Knappe, N. Vukicevic, L. Hollberg, R. Wynands, and W. Wiedmann, “A microwave frequency reference based on VCSEL-driven dark lineresonances in Cs vapor,” IEEE Trans. Instrum. Meas. 49, 1313–1317 (2000).
[Crossref]

1999 (1)

R. Wynands and A. Nagel, “Inversion of frequency-modulation spectroscopy line shapes,” J. Opt. Soc. Am. B. 16, 1617–1622 (1999).
[Crossref]

1995 (1)

D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 67, 2141–2143 (1995).
[Crossref]

1993 (1)

N. Cyr, M. Têtu, and M. Breton, “All-optical microwave frequency standard: a proposal,” IEEE Trans. Instrum. Meas. 42, 640–649 (1993).
[Crossref]

1985 (1)

M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited frequency-modulation spectroscopy,” J. Opt. Soc. Am. B. 2, 1510–1526 (1985).
[Crossref]

1983 (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy - Theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B. 32, 145–152 (1983).
[Crossref]

Ben-Aroya, I.

I. Ben-Aroya, M. Kahanov, and G. Eisenstein, “A CPT based 87Rb atomic clock employing a small spherical glass vapor cell”, in Proceedings of the 38th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, L. A. Breakiron, ed. (Reston, VA, USA, 2006), pp. 259–270.

Bjorklund, G. C.

M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited frequency-modulation spectroscopy,” J. Opt. Soc. Am. B. 2, 1510–1526 (1985).
[Crossref]

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy - Theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B. 32, 145–152 (1983).
[Crossref]

Breton, M.

N. Cyr, M. Têtu, and M. Breton, “All-optical microwave frequency standard: a proposal,” IEEE Trans. Instrum. Meas. 42, 640–649 (1993).
[Crossref]

Crescimanno, M.

D. F. Phillips, I. Novikova, C. Y.-T. Wang, R. L. Walsworth, and M. Crescimanno, “Modulation-induced frequency shifts in a coherent-population-trapping-based atomic clock,” J. Opt. Soc. Am. B. 22, 305–310 (2005).
[Crossref]

Cyr, N.

N. Cyr, M. Têtu, and M. Breton, “All-optical microwave frequency standard: a proposal,” IEEE Trans. Instrum. Meas. 42, 640–649 (1993).
[Crossref]

Eisenstein, G.

I. Ben-Aroya, M. Kahanov, and G. Eisenstein, “A CPT based 87Rb atomic clock employing a small spherical glass vapor cell”, in Proceedings of the 38th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, L. A. Breakiron, ed. (Reston, VA, USA, 2006), pp. 259–270.

Gehrtz, M.

M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited frequency-modulation spectroscopy,” J. Opt. Soc. Am. B. 2, 1510–1526 (1985).
[Crossref]

Gerginov, V.

V. Gerginov, V. Shah, S. Knappe, P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Atom-based stabilization for laser-pumped atomic clocks,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), D. Coler, ed. (Braunschweig, Germany, 2006), pp. 224–228.

Hollberg, L.

S. Knappe, P.D.D. Schwindt, V. Shah, L. Liew, J. Moreland, L. Hollberg, and J. Kitching, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. express 13, 1249–1253 (2005).
[Crossref] [PubMed]

J. Kitching, H. G. Robinson, L. Hollberg, S. Knappe, and R. Wynands, “Optical-noise in laser-pumped, all-optical microwave frequency references,” J. Opt. Soc. Am. B. 18, 1676–1683 (2001).
[Crossref]

J. Kitching, S. Knappe, N. Vukicevic, L. Hollberg, R. Wynands, and W. Wiedmann, “A microwave frequency reference based on VCSEL-driven dark lineresonances in Cs vapor,” IEEE Trans. Instrum. Meas. 49, 1313–1317 (2000).
[Crossref]

V. Gerginov, V. Shah, S. Knappe, P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Atom-based stabilization for laser-pumped atomic clocks,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), D. Coler, ed. (Braunschweig, Germany, 2006), pp. 224–228.

Kahanov, M.

I. Ben-Aroya, M. Kahanov, and G. Eisenstein, “A CPT based 87Rb atomic clock employing a small spherical glass vapor cell”, in Proceedings of the 38th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, L. A. Breakiron, ed. (Reston, VA, USA, 2006), pp. 259–270.

Kitching, J.

S. Knappe, P.D.D. Schwindt, V. Shah, L. Liew, J. Moreland, L. Hollberg, and J. Kitching, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. express 13, 1249–1253 (2005).
[Crossref] [PubMed]

J. Kitching, H. G. Robinson, L. Hollberg, S. Knappe, and R. Wynands, “Optical-noise in laser-pumped, all-optical microwave frequency references,” J. Opt. Soc. Am. B. 18, 1676–1683 (2001).
[Crossref]

J. Kitching, S. Knappe, N. Vukicevic, L. Hollberg, R. Wynands, and W. Wiedmann, “A microwave frequency reference based on VCSEL-driven dark lineresonances in Cs vapor,” IEEE Trans. Instrum. Meas. 49, 1313–1317 (2000).
[Crossref]

V. Gerginov, V. Shah, S. Knappe, P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Atom-based stabilization for laser-pumped atomic clocks,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), D. Coler, ed. (Braunschweig, Germany, 2006), pp. 224–228.

Knappe, S.

S. Knappe, P.D.D. Schwindt, V. Shah, L. Liew, J. Moreland, L. Hollberg, and J. Kitching, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. express 13, 1249–1253 (2005).
[Crossref] [PubMed]

J. Kitching, H. G. Robinson, L. Hollberg, S. Knappe, and R. Wynands, “Optical-noise in laser-pumped, all-optical microwave frequency references,” J. Opt. Soc. Am. B. 18, 1676–1683 (2001).
[Crossref]

J. Kitching, S. Knappe, N. Vukicevic, L. Hollberg, R. Wynands, and W. Wiedmann, “A microwave frequency reference based on VCSEL-driven dark lineresonances in Cs vapor,” IEEE Trans. Instrum. Meas. 49, 1313–1317 (2000).
[Crossref]

V. Gerginov, V. Shah, S. Knappe, P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Atom-based stabilization for laser-pumped atomic clocks,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), D. Coler, ed. (Braunschweig, Germany, 2006), pp. 224–228.

Kuksenkov, D. V.

D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 67, 2141–2143 (1995).
[Crossref]

Leblanc, J.

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, and G. M. Peake, “The Miniature Atomic Clock-Pre-Production Results,” in proceedings of TimeNav’07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy - Theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B. 32, 145–152 (1983).
[Crossref]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy - Theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B. 32, 145–152 (1983).
[Crossref]

Liew, L.

Lutwak, R.

R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M. Peake, “The MAC - a Miniature Atomic Clock,” in proceedings of 2005 Joint IEEE International Frequency Control (UFFC) Symposium and the 37th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, D. Coler, ed. (Vancouver, BC, Canada, 2005), pp. 752–757.

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, and G. M. Peake, “The Miniature Atomic Clock-Pre-Production Results,” in proceedings of TimeNav’07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.

Mescher, M.

R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M. Peake, “The MAC - a Miniature Atomic Clock,” in proceedings of 2005 Joint IEEE International Frequency Control (UFFC) Symposium and the 37th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, D. Coler, ed. (Vancouver, BC, Canada, 2005), pp. 752–757.

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, and G. M. Peake, “The Miniature Atomic Clock-Pre-Production Results,” in proceedings of TimeNav’07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.

Moreland, J.

Nagel, A.

R. Wynands and A. Nagel, “Inversion of frequency-modulation spectroscopy line shapes,” J. Opt. Soc. Am. B. 16, 1617–1622 (1999).
[Crossref]

Novikova, I.

D. F. Phillips, I. Novikova, C. Y.-T. Wang, R. L. Walsworth, and M. Crescimanno, “Modulation-induced frequency shifts in a coherent-population-trapping-based atomic clock,” J. Opt. Soc. Am. B. 22, 305–310 (2005).
[Crossref]

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy - Theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B. 32, 145–152 (1983).
[Crossref]

Peake, G. M.

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, and G. M. Peake, “The Miniature Atomic Clock-Pre-Production Results,” in proceedings of TimeNav’07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.

R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M. Peake, “The MAC - a Miniature Atomic Clock,” in proceedings of 2005 Joint IEEE International Frequency Control (UFFC) Symposium and the 37th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, D. Coler, ed. (Vancouver, BC, Canada, 2005), pp. 752–757.

Phillips, D. F.

D. F. Phillips, I. Novikova, C. Y.-T. Wang, R. L. Walsworth, and M. Crescimanno, “Modulation-induced frequency shifts in a coherent-population-trapping-based atomic clock,” J. Opt. Soc. Am. B. 22, 305–310 (2005).
[Crossref]

Rashed, A.

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, and G. M. Peake, “The Miniature Atomic Clock-Pre-Production Results,” in proceedings of TimeNav’07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.

Robinson, H. G.

J. Kitching, H. G. Robinson, L. Hollberg, S. Knappe, and R. Wynands, “Optical-noise in laser-pumped, all-optical microwave frequency references,” J. Opt. Soc. Am. B. 18, 1676–1683 (2001).
[Crossref]

Schwindt, P. D. D.

V. Gerginov, V. Shah, S. Knappe, P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Atom-based stabilization for laser-pumped atomic clocks,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), D. Coler, ed. (Braunschweig, Germany, 2006), pp. 224–228.

Schwindt, P.D.D.

Serkland, D. K.

R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M. Peake, “The MAC - a Miniature Atomic Clock,” in proceedings of 2005 Joint IEEE International Frequency Control (UFFC) Symposium and the 37th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, D. Coler, ed. (Vancouver, BC, Canada, 2005), pp. 752–757.

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, and G. M. Peake, “The Miniature Atomic Clock-Pre-Production Results,” in proceedings of TimeNav’07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.

Shah, V.

S. Knappe, P.D.D. Schwindt, V. Shah, L. Liew, J. Moreland, L. Hollberg, and J. Kitching, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. express 13, 1249–1253 (2005).
[Crossref] [PubMed]

V. Gerginov, V. Shah, S. Knappe, P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Atom-based stabilization for laser-pumped atomic clocks,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), D. Coler, ed. (Braunschweig, Germany, 2006), pp. 224–228.

Swirhun, S.

D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 67, 2141–2143 (1995).
[Crossref]

Temkin, H.

D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 67, 2141–2143 (1995).
[Crossref]

Tepolt, G.

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, and G. M. Peake, “The Miniature Atomic Clock-Pre-Production Results,” in proceedings of TimeNav’07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.

Têtu, M.

N. Cyr, M. Têtu, and M. Breton, “All-optical microwave frequency standard: a proposal,” IEEE Trans. Instrum. Meas. 42, 640–649 (1993).
[Crossref]

Vanier, J.

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

Varghese, M.

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, and G. M. Peake, “The Miniature Atomic Clock-Pre-Production Results,” in proceedings of TimeNav’07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.

R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M. Peake, “The MAC - a Miniature Atomic Clock,” in proceedings of 2005 Joint IEEE International Frequency Control (UFFC) Symposium and the 37th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, D. Coler, ed. (Vancouver, BC, Canada, 2005), pp. 752–757.

Vlitas, P.

R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M. Peake, “The MAC - a Miniature Atomic Clock,” in proceedings of 2005 Joint IEEE International Frequency Control (UFFC) Symposium and the 37th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, D. Coler, ed. (Vancouver, BC, Canada, 2005), pp. 752–757.

Vukicevic, N.

J. Kitching, S. Knappe, N. Vukicevic, L. Hollberg, R. Wynands, and W. Wiedmann, “A microwave frequency reference based on VCSEL-driven dark lineresonances in Cs vapor,” IEEE Trans. Instrum. Meas. 49, 1313–1317 (2000).
[Crossref]

Walsworth, R. L.

D. F. Phillips, I. Novikova, C. Y.-T. Wang, R. L. Walsworth, and M. Crescimanno, “Modulation-induced frequency shifts in a coherent-population-trapping-based atomic clock,” J. Opt. Soc. Am. B. 22, 305–310 (2005).
[Crossref]

Wang, C. Y.-T.

D. F. Phillips, I. Novikova, C. Y.-T. Wang, R. L. Walsworth, and M. Crescimanno, “Modulation-induced frequency shifts in a coherent-population-trapping-based atomic clock,” J. Opt. Soc. Am. B. 22, 305–310 (2005).
[Crossref]

Whittaker, E. A.

M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited frequency-modulation spectroscopy,” J. Opt. Soc. Am. B. 2, 1510–1526 (1985).
[Crossref]

Wiedmann, W.

J. Kitching, S. Knappe, N. Vukicevic, L. Hollberg, R. Wynands, and W. Wiedmann, “A microwave frequency reference based on VCSEL-driven dark lineresonances in Cs vapor,” IEEE Trans. Instrum. Meas. 49, 1313–1317 (2000).
[Crossref]

Wynands, R.

J. Kitching, H. G. Robinson, L. Hollberg, S. Knappe, and R. Wynands, “Optical-noise in laser-pumped, all-optical microwave frequency references,” J. Opt. Soc. Am. B. 18, 1676–1683 (2001).
[Crossref]

J. Kitching, S. Knappe, N. Vukicevic, L. Hollberg, R. Wynands, and W. Wiedmann, “A microwave frequency reference based on VCSEL-driven dark lineresonances in Cs vapor,” IEEE Trans. Instrum. Meas. 49, 1313–1317 (2000).
[Crossref]

R. Wynands and A. Nagel, “Inversion of frequency-modulation spectroscopy line shapes,” J. Opt. Soc. Am. B. 16, 1617–1622 (1999).
[Crossref]

Appl. Phys. B (1)

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

Appl. Phys. B. (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy - Theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B. 32, 145–152 (1983).
[Crossref]

Appl. Phys. Lett. (1)

D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 67, 2141–2143 (1995).
[Crossref]

IEEE Trans. Instrum. Meas. (2)

J. Kitching, S. Knappe, N. Vukicevic, L. Hollberg, R. Wynands, and W. Wiedmann, “A microwave frequency reference based on VCSEL-driven dark lineresonances in Cs vapor,” IEEE Trans. Instrum. Meas. 49, 1313–1317 (2000).
[Crossref]

N. Cyr, M. Têtu, and M. Breton, “All-optical microwave frequency standard: a proposal,” IEEE Trans. Instrum. Meas. 42, 640–649 (1993).
[Crossref]

J. Opt. Soc. Am. B. (4)

D. F. Phillips, I. Novikova, C. Y.-T. Wang, R. L. Walsworth, and M. Crescimanno, “Modulation-induced frequency shifts in a coherent-population-trapping-based atomic clock,” J. Opt. Soc. Am. B. 22, 305–310 (2005).
[Crossref]

M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited frequency-modulation spectroscopy,” J. Opt. Soc. Am. B. 2, 1510–1526 (1985).
[Crossref]

R. Wynands and A. Nagel, “Inversion of frequency-modulation spectroscopy line shapes,” J. Opt. Soc. Am. B. 16, 1617–1622 (1999).
[Crossref]

J. Kitching, H. G. Robinson, L. Hollberg, S. Knappe, and R. Wynands, “Optical-noise in laser-pumped, all-optical microwave frequency references,” J. Opt. Soc. Am. B. 18, 1676–1683 (2001).
[Crossref]

Opt. express (1)

Other (4)

V. Gerginov, V. Shah, S. Knappe, P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Atom-based stabilization for laser-pumped atomic clocks,” in Proceedings of the 20th European Frequency and Time Forum (EFTF), D. Coler, ed. (Braunschweig, Germany, 2006), pp. 224–228.

I. Ben-Aroya, M. Kahanov, and G. Eisenstein, “A CPT based 87Rb atomic clock employing a small spherical glass vapor cell”, in Proceedings of the 38th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, L. A. Breakiron, ed. (Reston, VA, USA, 2006), pp. 259–270.

R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M. Peake, “The MAC - a Miniature Atomic Clock,” in proceedings of 2005 Joint IEEE International Frequency Control (UFFC) Symposium and the 37th Annual Precise Time & Time Interval (PTTI) Systems & Applications Meeting, D. Coler, ed. (Vancouver, BC, Canada, 2005), pp. 752–757.

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, and G. M. Peake, “The Miniature Atomic Clock-Pre-Production Results,” in proceedings of TimeNav’07: Joint 21th European Frequency and Time Forum (EFTF) & IEEE International Frequency Control Symposium (IEEE-FCS), D. Coler, ed. (Geneva, Switzerland, 2007), pp. 1327–1333.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the CPT based atomic clock. On the right is shown a photograph of a small spherical glass cell.

Fig. 2.
Fig. 2.

(a) CPT measurement using FM spectroscopy. The blue dashed-line represents the “in-phase” component while the solid red line represents the ‘quadrature’. (b) Direct measurement of the CPT resonance. The resonance fits a Lorentzian with a width of 186 Hz (red-dotted line).

Fig. 3.
Fig. 3.

(a) Maximum measured slope (in units of μV rms/Hz) of the “in-phase” component versus FM parameters. Each point represents an optimum rotation of the two Lock-in outputs with respect to each other. The (b) Measured noise spectral density accompanying the “in-phase” component (in units of μV rms/Hz1/2).

Fig. 4.
Fig. 4.

(a) Measured Allen deviation of the CPT based clock. The red dashed-line equals 3×10-111/2. (b) Frequency measurement of the 10 MHz output.

Metrics