Abstract

Optically injected semiconductor laser under period-one oscillation is investigated as a source for photonic microwave transmission over fiber. The period-one nonlinear dynamics of an optically injected laser is studied for the purpose of minimizing the microwave power penalty induced by chromatic dispersion. Over a large range of injection strengths and frequency detunings, we first obtain the mapping of the period-one oscillation characteristics, including the microwave frequency, the microwave power, and the single sideband (SSB) characteristics of the optical spectrum. By accounting for the fiber chromatic dispersion, we calculate its effect on the optical spectrum and the associated microwave power penalty. A mapping of the minimum microwave power deliverable after the maximum penalty is obtained. The system is shown to be least susceptible to the penalty when operated under strong injection with the frequency detuned above the Hopf bifurcation line. Microwave frequency beyond six times the relaxation resonance frequency can be effectively transmitted.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. J. Seeds, "Microwave photonics," IEEE Trans. Microwave Theory Tech. 50, 877-887 (2002).
    [CrossRef]
  2. N. Dagli, "Wide-bandwidth lasers and modulators for RF photonics," IEEE Trans. Microwave Theory Tech. 47, 1151-1171 (1999).
    [CrossRef]
  3. A. Kaszubowska, P. Anandarajah, and L. P. Barry, "Multifunctional operation of a. ber Bragg grating in a WDM/SCM radio over. ber distribution system," IEEE Photon. Technol. Lett. 16, 605-607 (2004).
    [CrossRef]
  4. C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yo.e, "Millimeter-wave broad-band. ber-wireless system incorporating baseband data transmission over. ber and remote LO delivery," J. Lightwave Technol. 18, 1355-1363 (2000).
    [CrossRef]
  5. D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, "Millimetre-wave. brewireless transmission systems with reduced e.ects of. bre chromatic dispersion," Opt. Quantum Electron. 30, 1021-1031 (1998).
    [CrossRef]
  6. C. Lim, D. Novak, A. Nirmalathas, and G. H. Smith, "Dispersion-induced power penalties in millimeter-wave signal transmission using multisection DBR semiconductor laser," IEEE Trans. Microwave Theory Tech. 49, 288-296 (2001).
    [CrossRef]
  7. G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming chromatic-dispersion e.ects in. ber-wireless systems incorporating external modulators," IEEE Trans. Microwave Theory Tech. 45, 1410-1415 (1997).
    [CrossRef]
  8. U. Gliese, "Multi-functional. bre-optic microwave links," Opt. Quantum Electron. 30, 1005-1019 (1998).
    [CrossRef]
  9. L. A. Johansson and A. J. Seeds, "Generation and transmission of millimeter-wave datamodulated optical signals using an optical injection phase-lock loop," J. Lightwave Technol. 21, 511-520 (2003).
    [CrossRef]
  10. M. Hyodo, K. S. Abedin, and N. Onodera, "Generation of millimeter-wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electro-optic crystal," Opt. Commun. 171, 159-169 (1999).
    [CrossRef]
  11. J. Han, B. J. Seo, Y. Han, B. Jalali, and H. R. Fetterman, "Reduction of. ber chromatic dispersion e.ects in. ber-wireless and photonic time-stretching system using polymer modulators," J. Lightwave Technol. 21, 1504-1509 (2003).
    [CrossRef]
  12. D. Wake, C. R. Lima, and P. A. Davies, "Transmission of 60-GHz signals over 100 km of optical. ber using a dual-mode semiconductor laser source," IEEE Photon. Technol. Lett. 8, 578-580 (1996).
    [CrossRef]
  13. K. Sato, "Semiconductor light sources for 40-Gb/s transmission systems," J. Lightwave Technol. 20, 2035-2043 (2002).
    [CrossRef]
  14. K. S. Lee and C. Shu, "Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry-Perot grating-lens external cavity," IEEE J. Quantum Electron. 33, 1832-1838 (1997).
    [CrossRef]
  15. K. E. Razavi and P. A. Davies, "Semiconductor laser sources for the generation of millimetre-wave signals," IEE Proc. Optoelectron. 145, 159-163 (1998).Q1
    [CrossRef]
  16. H. S. Ryu, Y. K. Seo, and W. Y. Choi, "Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode," IEEE Photon. Technol. Lett. 16, 1942-1944 (2004).
    [CrossRef]
  17. S. C. Chan, S. K. Hwang, and J. M. Liu, "Radio-over-.ber AM-to-FM upconversion using an optically injected semiconductor laser," Opt. Lett. 31, 2254-2256 (2006).
    [CrossRef] [PubMed]
  18. S. C. Chan, S. K. Hwang, and J. M. Liu, "Radio-over-.ber transmission from an optically injected semiconductor laser in period-one state," SPIE 6468, 646811 (2007).Q2
    [CrossRef]
  19. S. K. Hwang, J. M. Liu, and J. K. White, "Characteristics of period-one oscillations in semiconductor lasers subject to optical injection," IEEE J. Sel. Top. Quantum Electron. 10, 974-981 (2004).Q3
    [CrossRef]
  20. S. C. Chan and J. M. Liu, "Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser," IEEE J. Quantum Electron. 42, 699-705 (2006).
    [CrossRef]
  21. T. B. Simpson and F. Doft, "Double-locked laser diode for microwave photonics applications," IEEE Photon. Technol. Lett. 11, 1476-1478 (1999).
    [CrossRef]
  22. T. B. Simpson, "Phase-locked microwave-frequency modulations in optically-injected laser diodes," Opt. Commun. 170, 93-98 (1999).
    [CrossRef]
  23. S. C. Chan and J. M. Liu, "Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics," IEEE J. Sel. Top. Quantum Electron. 10, 1025-1032 (2004).Q4
    [CrossRef]
  24. A. Kaszubowska, L. P. Barry, and P. Anandarajah, "E.ects of intermodulation distortion on the performance of a hybrid radio/.ber system employing a self-pulsating laser diode transmitter," IEEE Photon. Technol. Lett. 15, 852-854 (2003).
    [CrossRef]
  25. A. Kaszubowska, L. P. Barry, and P. Anandarajah, "Multiple RF carrier distribution in a hybrid radio/.ber system employing a self-pulsating laser diode transmitter," IEEE Photon. Technol. Lett. 14, 1599-1601 (2002).
    [CrossRef]
  26. L. No¨el, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, "Novel techniques for high-capacity 60-GHz. ber-radio transmission systems," IEEE Trans. Microwave Theory Tech. 45, 1416-1423 (1997).Q5
    [CrossRef]
  27. P. Saboureau, J. P. Foing, and P. Schanne, "Injection-locked semiconductor lasers with delayed optoelectronic feedback," IEEE J. Quantum Electron. 33, 1582-1591 (1997).
    [CrossRef]
  28. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclass. Opt. 9, 765-784 (1997).Q6
    [CrossRef]
  29. T. B. Simpson, J. M. Liu, and A. Gavrielides, "Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection," IEEE J. Quantum Electron. 32, 1456-1468 (1996).
    [CrossRef]
  30. J. M. Liu, Photonic Devices. Cambridge (2005).
  31. S. K. Hwang, J. M. Liu, and J. K. White, "35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking," IEEE Photon. Technol. Lett. 16, 972-974 (2004).
    [CrossRef]
  32. T. B. Simpson, "Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection," Opt. Commun. 215, 135-151 (2003).
    [CrossRef]
  33. A. Gavrielides, V. Kovanis, and T. Erneux, "Analytical stability boundaries for a semiconductor laser subject to optical injection," Opt. Commun. 136, 253-256 (1997).
    [CrossRef]
  34. T. B. Simpson and J. M. Liu, "Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers," J. Appl. Phys. 73, 2587-2589 (1993).
    [CrossRef]
  35. A. Murakami, K. Kawashima, and K. Atsuki, "Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection," IEEE J. Quantum Electron. 39, 1196-1204 (2003).
    [CrossRef]
  36. S. K. Hwang and D. H. Liang, "E.ects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers," Appl. Phys. Lett. 89, 061120 (2006).
    [CrossRef]
  37. W. A. van der Graaf, A. M. Levine, and D. Lenstra, "Diode lasers locked to noisy injection," IEEE J. Quantum Electron. 33, 434-442 (1997).
    [CrossRef]
  38. S. K. Hwang and J. M. Liu, "Dynamical characteristics of an optically injected semiconductor laser," Opt. Commun. 183, 195-205 (2000).
    [CrossRef]
  39. S. Wieczorek, B. Krauskopf, and D. Lenstra, "A unifying view of bifurcations in a semiconductor laser subject to optical injection," Opt. Commun. 172, 279-295 (1999).
    [CrossRef]
  40. T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, "Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection," Phys. Rev. A. 53, 4372-4380 (1996).
    [CrossRef] [PubMed]
  41. H. S. Ryu, Y. K. Seo, and W. Y. Choi, "Optical single sideband modulation using an injectionlocked semiconductor laser as an optical. lter," Intl. Topical Meeting on Microwave Photonics, 223-226 (2003).
  42. S. C. Chan and J. M. Liu, "Microwave frequency division and multiplication using an optically injected semiconductor laser," IEEE J. Quantum Electron. 41, 1142-1147 (2005).
    [CrossRef]

2007

S. C. Chan, S. K. Hwang, and J. M. Liu, "Radio-over-.ber transmission from an optically injected semiconductor laser in period-one state," SPIE 6468, 646811 (2007).Q2
[CrossRef]

2006

S. C. Chan and J. M. Liu, "Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser," IEEE J. Quantum Electron. 42, 699-705 (2006).
[CrossRef]

S. K. Hwang and D. H. Liang, "E.ects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers," Appl. Phys. Lett. 89, 061120 (2006).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, "Radio-over-.ber AM-to-FM upconversion using an optically injected semiconductor laser," Opt. Lett. 31, 2254-2256 (2006).
[CrossRef] [PubMed]

2005

S. C. Chan and J. M. Liu, "Microwave frequency division and multiplication using an optically injected semiconductor laser," IEEE J. Quantum Electron. 41, 1142-1147 (2005).
[CrossRef]

2004

S. C. Chan and J. M. Liu, "Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics," IEEE J. Sel. Top. Quantum Electron. 10, 1025-1032 (2004).Q4
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, "35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking," IEEE Photon. Technol. Lett. 16, 972-974 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, "Characteristics of period-one oscillations in semiconductor lasers subject to optical injection," IEEE J. Sel. Top. Quantum Electron. 10, 974-981 (2004).Q3
[CrossRef]

H. S. Ryu, Y. K. Seo, and W. Y. Choi, "Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode," IEEE Photon. Technol. Lett. 16, 1942-1944 (2004).
[CrossRef]

A. Kaszubowska, P. Anandarajah, and L. P. Barry, "Multifunctional operation of a. ber Bragg grating in a WDM/SCM radio over. ber distribution system," IEEE Photon. Technol. Lett. 16, 605-607 (2004).
[CrossRef]

2003

T. B. Simpson, "Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection," Opt. Commun. 215, 135-151 (2003).
[CrossRef]

A. Kaszubowska, L. P. Barry, and P. Anandarajah, "E.ects of intermodulation distortion on the performance of a hybrid radio/.ber system employing a self-pulsating laser diode transmitter," IEEE Photon. Technol. Lett. 15, 852-854 (2003).
[CrossRef]

A. Murakami, K. Kawashima, and K. Atsuki, "Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection," IEEE J. Quantum Electron. 39, 1196-1204 (2003).
[CrossRef]

L. A. Johansson and A. J. Seeds, "Generation and transmission of millimeter-wave datamodulated optical signals using an optical injection phase-lock loop," J. Lightwave Technol. 21, 511-520 (2003).
[CrossRef]

J. Han, B. J. Seo, Y. Han, B. Jalali, and H. R. Fetterman, "Reduction of. ber chromatic dispersion e.ects in. ber-wireless and photonic time-stretching system using polymer modulators," J. Lightwave Technol. 21, 1504-1509 (2003).
[CrossRef]

2002

K. Sato, "Semiconductor light sources for 40-Gb/s transmission systems," J. Lightwave Technol. 20, 2035-2043 (2002).
[CrossRef]

A. Kaszubowska, L. P. Barry, and P. Anandarajah, "Multiple RF carrier distribution in a hybrid radio/.ber system employing a self-pulsating laser diode transmitter," IEEE Photon. Technol. Lett. 14, 1599-1601 (2002).
[CrossRef]

A. J. Seeds, "Microwave photonics," IEEE Trans. Microwave Theory Tech. 50, 877-887 (2002).
[CrossRef]

2001

C. Lim, D. Novak, A. Nirmalathas, and G. H. Smith, "Dispersion-induced power penalties in millimeter-wave signal transmission using multisection DBR semiconductor laser," IEEE Trans. Microwave Theory Tech. 49, 288-296 (2001).
[CrossRef]

2000

1999

S. Wieczorek, B. Krauskopf, and D. Lenstra, "A unifying view of bifurcations in a semiconductor laser subject to optical injection," Opt. Commun. 172, 279-295 (1999).
[CrossRef]

M. Hyodo, K. S. Abedin, and N. Onodera, "Generation of millimeter-wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electro-optic crystal," Opt. Commun. 171, 159-169 (1999).
[CrossRef]

N. Dagli, "Wide-bandwidth lasers and modulators for RF photonics," IEEE Trans. Microwave Theory Tech. 47, 1151-1171 (1999).
[CrossRef]

T. B. Simpson and F. Doft, "Double-locked laser diode for microwave photonics applications," IEEE Photon. Technol. Lett. 11, 1476-1478 (1999).
[CrossRef]

T. B. Simpson, "Phase-locked microwave-frequency modulations in optically-injected laser diodes," Opt. Commun. 170, 93-98 (1999).
[CrossRef]

1998

K. E. Razavi and P. A. Davies, "Semiconductor laser sources for the generation of millimetre-wave signals," IEE Proc. Optoelectron. 145, 159-163 (1998).Q1
[CrossRef]

U. Gliese, "Multi-functional. bre-optic microwave links," Opt. Quantum Electron. 30, 1005-1019 (1998).
[CrossRef]

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, "Millimetre-wave. brewireless transmission systems with reduced e.ects of. bre chromatic dispersion," Opt. Quantum Electron. 30, 1021-1031 (1998).
[CrossRef]

1997

G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming chromatic-dispersion e.ects in. ber-wireless systems incorporating external modulators," IEEE Trans. Microwave Theory Tech. 45, 1410-1415 (1997).
[CrossRef]

K. S. Lee and C. Shu, "Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry-Perot grating-lens external cavity," IEEE J. Quantum Electron. 33, 1832-1838 (1997).
[CrossRef]

W. A. van der Graaf, A. M. Levine, and D. Lenstra, "Diode lasers locked to noisy injection," IEEE J. Quantum Electron. 33, 434-442 (1997).
[CrossRef]

L. No¨el, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, "Novel techniques for high-capacity 60-GHz. ber-radio transmission systems," IEEE Trans. Microwave Theory Tech. 45, 1416-1423 (1997).Q5
[CrossRef]

P. Saboureau, J. P. Foing, and P. Schanne, "Injection-locked semiconductor lasers with delayed optoelectronic feedback," IEEE J. Quantum Electron. 33, 1582-1591 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclass. Opt. 9, 765-784 (1997).Q6
[CrossRef]

A. Gavrielides, V. Kovanis, and T. Erneux, "Analytical stability boundaries for a semiconductor laser subject to optical injection," Opt. Commun. 136, 253-256 (1997).
[CrossRef]

1996

T. B. Simpson, J. M. Liu, and A. Gavrielides, "Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection," IEEE J. Quantum Electron. 32, 1456-1468 (1996).
[CrossRef]

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, "Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection," Phys. Rev. A. 53, 4372-4380 (1996).
[CrossRef] [PubMed]

D. Wake, C. R. Lima, and P. A. Davies, "Transmission of 60-GHz signals over 100 km of optical. ber using a dual-mode semiconductor laser source," IEEE Photon. Technol. Lett. 8, 578-580 (1996).
[CrossRef]

1993

T. B. Simpson and J. M. Liu, "Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers," J. Appl. Phys. 73, 2587-2589 (1993).
[CrossRef]

Appl. Phys. Lett.

S. K. Hwang and D. H. Liang, "E.ects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers," Appl. Phys. Lett. 89, 061120 (2006).
[CrossRef]

IEE Proc. Optoelectron.

K. E. Razavi and P. A. Davies, "Semiconductor laser sources for the generation of millimetre-wave signals," IEE Proc. Optoelectron. 145, 159-163 (1998).Q1
[CrossRef]

IEEE J. Quantum Electron.

K. S. Lee and C. Shu, "Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry-Perot grating-lens external cavity," IEEE J. Quantum Electron. 33, 1832-1838 (1997).
[CrossRef]

W. A. van der Graaf, A. M. Levine, and D. Lenstra, "Diode lasers locked to noisy injection," IEEE J. Quantum Electron. 33, 434-442 (1997).
[CrossRef]

S. C. Chan and J. M. Liu, "Microwave frequency division and multiplication using an optically injected semiconductor laser," IEEE J. Quantum Electron. 41, 1142-1147 (2005).
[CrossRef]

S. C. Chan and J. M. Liu, "Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser," IEEE J. Quantum Electron. 42, 699-705 (2006).
[CrossRef]

P. Saboureau, J. P. Foing, and P. Schanne, "Injection-locked semiconductor lasers with delayed optoelectronic feedback," IEEE J. Quantum Electron. 33, 1582-1591 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, "Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection," IEEE J. Quantum Electron. 32, 1456-1468 (1996).
[CrossRef]

A. Murakami, K. Kawashima, and K. Atsuki, "Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection," IEEE J. Quantum Electron. 39, 1196-1204 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. K. Hwang, J. M. Liu, and J. K. White, "Characteristics of period-one oscillations in semiconductor lasers subject to optical injection," IEEE J. Sel. Top. Quantum Electron. 10, 974-981 (2004).Q3
[CrossRef]

S. C. Chan and J. M. Liu, "Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics," IEEE J. Sel. Top. Quantum Electron. 10, 1025-1032 (2004).Q4
[CrossRef]

IEEE Photon. Technol. Lett.

A. Kaszubowska, L. P. Barry, and P. Anandarajah, "E.ects of intermodulation distortion on the performance of a hybrid radio/.ber system employing a self-pulsating laser diode transmitter," IEEE Photon. Technol. Lett. 15, 852-854 (2003).
[CrossRef]

A. Kaszubowska, L. P. Barry, and P. Anandarajah, "Multiple RF carrier distribution in a hybrid radio/.ber system employing a self-pulsating laser diode transmitter," IEEE Photon. Technol. Lett. 14, 1599-1601 (2002).
[CrossRef]

H. S. Ryu, Y. K. Seo, and W. Y. Choi, "Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode," IEEE Photon. Technol. Lett. 16, 1942-1944 (2004).
[CrossRef]

A. Kaszubowska, P. Anandarajah, and L. P. Barry, "Multifunctional operation of a. ber Bragg grating in a WDM/SCM radio over. ber distribution system," IEEE Photon. Technol. Lett. 16, 605-607 (2004).
[CrossRef]

D. Wake, C. R. Lima, and P. A. Davies, "Transmission of 60-GHz signals over 100 km of optical. ber using a dual-mode semiconductor laser source," IEEE Photon. Technol. Lett. 8, 578-580 (1996).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, "35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking," IEEE Photon. Technol. Lett. 16, 972-974 (2004).
[CrossRef]

T. B. Simpson and F. Doft, "Double-locked laser diode for microwave photonics applications," IEEE Photon. Technol. Lett. 11, 1476-1478 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

C. Lim, D. Novak, A. Nirmalathas, and G. H. Smith, "Dispersion-induced power penalties in millimeter-wave signal transmission using multisection DBR semiconductor laser," IEEE Trans. Microwave Theory Tech. 49, 288-296 (2001).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming chromatic-dispersion e.ects in. ber-wireless systems incorporating external modulators," IEEE Trans. Microwave Theory Tech. 45, 1410-1415 (1997).
[CrossRef]

A. J. Seeds, "Microwave photonics," IEEE Trans. Microwave Theory Tech. 50, 877-887 (2002).
[CrossRef]

N. Dagli, "Wide-bandwidth lasers and modulators for RF photonics," IEEE Trans. Microwave Theory Tech. 47, 1151-1171 (1999).
[CrossRef]

L. No¨el, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, "Novel techniques for high-capacity 60-GHz. ber-radio transmission systems," IEEE Trans. Microwave Theory Tech. 45, 1416-1423 (1997).Q5
[CrossRef]

J. Appl. Phys.

T. B. Simpson and J. M. Liu, "Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers," J. Appl. Phys. 73, 2587-2589 (1993).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

S. K. Hwang and J. M. Liu, "Dynamical characteristics of an optically injected semiconductor laser," Opt. Commun. 183, 195-205 (2000).
[CrossRef]

S. Wieczorek, B. Krauskopf, and D. Lenstra, "A unifying view of bifurcations in a semiconductor laser subject to optical injection," Opt. Commun. 172, 279-295 (1999).
[CrossRef]

T. B. Simpson, "Phase-locked microwave-frequency modulations in optically-injected laser diodes," Opt. Commun. 170, 93-98 (1999).
[CrossRef]

T. B. Simpson, "Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection," Opt. Commun. 215, 135-151 (2003).
[CrossRef]

A. Gavrielides, V. Kovanis, and T. Erneux, "Analytical stability boundaries for a semiconductor laser subject to optical injection," Opt. Commun. 136, 253-256 (1997).
[CrossRef]

M. Hyodo, K. S. Abedin, and N. Onodera, "Generation of millimeter-wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electro-optic crystal," Opt. Commun. 171, 159-169 (1999).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

U. Gliese, "Multi-functional. bre-optic microwave links," Opt. Quantum Electron. 30, 1005-1019 (1998).
[CrossRef]

D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, "Millimetre-wave. brewireless transmission systems with reduced e.ects of. bre chromatic dispersion," Opt. Quantum Electron. 30, 1021-1031 (1998).
[CrossRef]

Phys. Rev. A.

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, "Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection," Phys. Rev. A. 53, 4372-4380 (1996).
[CrossRef] [PubMed]

Quantum Semiclass. Opt.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclass. Opt. 9, 765-784 (1997).Q6
[CrossRef]

SPIE

S. C. Chan, S. K. Hwang, and J. M. Liu, "Radio-over-.ber transmission from an optically injected semiconductor laser in period-one state," SPIE 6468, 646811 (2007).Q2
[CrossRef]

Other

J. M. Liu, Photonic Devices. Cambridge (2005).

H. S. Ryu, Y. K. Seo, and W. Y. Choi, "Optical single sideband modulation using an injectionlocked semiconductor laser as an optical. lter," Intl. Topical Meeting on Microwave Photonics, 223-226 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of the simulated setup. ML: master laser; SL: slave laser; OI: optical isolator; M: mirror; BS: beam splitter; F: fiber; FC: fiber coupler; PD: photodiode; PSA: power spectrum analyzer; and OSA: optical spectrum analyzer.

Fig. 2.
Fig. 2.

Optical spectrum with the frequency offset to the free-running slave laser frequency. The injection frequency detuning is kept constant at f i = 20 GHz as indicated by the arrows. The injection strength ξi is varied to obtain different states: (a) stable locking (ξi = 0.35); (b) SSB period-one (ξi = 0.29); (c) DSB period-one (ξi = 0.06); and (d) four-wave mixing (ξi = 0.01).

Fig. 3.
Fig. 3.

Fundamental microwave frequency f 0.

Fig. 4.
Fig. 4.

Mapping of the fundamental frequency f 0.

Fig. 5.
Fig. 5.

Fundamental and second harmonic microwave power P f 0 (closed symbols) and P 2f 0 (open symbols) as the generated microwave frequency f 0 is tuned. Tuning is achieved by varying ξi while keeping fi constant at 40 GHz (circles), 30 GHz (triangles), and 20 GHz (squares), respectively.

Fig. 6.
Fig. 6.

Mapping of the fundamental microwave power P f 0 generated before transmitting over fiber. All microwave powers are normalized to the maximum power obtained at (ξi,f i) = (0.095,5 GHz).

Fig. 7.
Fig. 7.

Fundamental microwave power P f 0 generated after fiber propagation. The input period-one states are (a) SSB and (b) DSB, where (ξi,f i) = (0.29, 20 GHz) and (0.06, 20 GHz), respectively.

Fig. 8.
Fig. 8.

Relative magnitudes of the optical frequency components as the generated microwave frequency f 0 is tuned. Tuning is achieved by varying ξi while keeping /i constant at 30 GHz. The magnitudes are normalized to the free-running field amplitude |A 0| of the slave laser.

Fig. 9.
Fig. 9.

Mapping of the sideband rejection ratio R.

Fig. 10.
Fig. 10.

Mapping of the worst case P f 0 when the dispersion-induced power penalty is considered.

Fig. 11.
Fig. 11.

Relative frequency difference Δf/f 0. Δf is the frequency difference between the period-one component f i - f 0 and the shifted cavity resonance f s.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

dA d t = [ γ c 2 + i ( ω 0 ω c ) ] A + Γ 2 ( 1 i b ) gA + η A i e i Ω i t
d N d t = J ed γ s N gS
S = 2 0 n 2 ħ ω 0 A 2
g = γ c Γ + γ n N N 0 S 0 γ p S S 0 Γ S 0
d a r d t = 1 2 [ γ c γ n γ s J ˜ ñ γ p ( a r 2 + a i 2 1 ) ] ( a r + ba i ) + ξ i γ c cos Ω i t
d a i d t = 1 2 [ γ c γ n γ s J ˜ ñ γ p ( a r 2 + a i 2 1 ) ] ( b a r + a i ) + ξ i γ c sin Ω i t
d ñ d t = [ γ s + γ n ( a r 2 + a i 2 ) ñ γ s J ˜ ( a r 2 + a i 2 1 ) ]
+ γ s γ p γ c J ˜ ( a r 2 + a i 2 ) ( a r 2 + a i 2 1 )
ϕ ( ω ) = λ 2 l D λ 4 πc ( ω ω 0 ) 2
f s = Γ 4 π b g γ c Γ
Δ f = f i f 0 f s .

Metrics