Abstract

Based on nine up-to-date types of semiconductor-optical-amplifier (SOA) samples, we devised a power-consumption model of SOA-based all-optical gates as a tool to develop faster and more efficient OTDM systems for bitrates from 10 to 160 Gb/s and those over 160 Gb/s. The conventional effect of a continuous wave (cw) holding beam was included in the model. Furthermore, in this work we defined three step-wise quantum conversion efficiencies η1, η2, and η3 from current-injected carriers through photons. The dependence of each of the three efficiencies on the SOA-structure was studied. The total efficiency ηT observed for the nine SOAs ranged widely from 0.07 to 0.46. The validity of the power-consumption model was verified by systematically measuring the effective carrier recovery rate. According to our model, the power consumption of the best existing SOA-based gate for 160-Gb/s signals is 750 mW, and this increases at a rate approximately proportional to (bitrate)2, and decreases proportionally to (1ηT)2.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. E. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Selected Topics in Quantum Electron. 6, 1428-1435 (2000).Q1
    [CrossRef]
  2. Y. Ueno, S. Nakamura, and K. Tajima, "Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160-GHz range for use in ultrahigh-speed all-optical signal processing," J. Opt. Soc. Am. B19, 2573-2589 (2002).
  3. S. Nakamura, Y. Ueno, K. Tajima, "Error-free all-optical demultiplexing at 336 Gb/s with a hybrid-integrated symmetric-Mach-Zehnder switch," presented at Optical Fiber Communications Conference (2002), FD3.
  4. Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photonics. Technol. Lett. 13, 469-471 (2001).
    [CrossRef]
  5. S. Nakamura, Y. Ueno, and K. Tajima, "168-Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch," IEEE Photonics. Technol. Lett. 13, 1091-1093 (2001).
    [CrossRef]
  6. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave. Technol. 24, 230-236 (2006).
    [CrossRef]
  7. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A.M.J. Koonen, G.D. Khoe, X. Shu, I. Bennion and H.J.S. Dorren, "Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier," J. Lightwave. Technol. 25, 103-108 (2007).
    [CrossRef]
  8. E. Tangdiongga, Y. Liu, H. de Waardt, G. D. Khoe, A. M. J. Koonen, H. J. S. Dorren, X. Shu and I. Bennion, "All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier," Opt. Lett. 32, 835-837 (2007).
    [CrossRef] [PubMed]
  9. C. Schubert, R. H. Derksen, M. Moller, R. Ludwig, C.-J. Weiske, J. Lutz, S. Ferber, A. Kirstadter, G. Lehmann and C. Schmidt-Langhorst, "Integrated 100-Gb/s ETDM receiver," J. Lightwave Technol. 25, 122-130 (2007).
    [CrossRef]
  10. R. J. Manning and D. A. O. Davies, "Three-wavelength device for all-optical signal processing," Opt. Lett. 19, 889-891 (1994).
    [CrossRef] [PubMed]
  11. J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photonics Technol. Lett. 14, 12-14 (2002).
    [CrossRef]
  12. G. Talli and M.J. Adams, "Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments," Opt. Commun. 218, 161-166 (2003).
    [CrossRef]
  13. G. Talli and M.J. Adams, "Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam," Opt. Commun. 245, 363-370 (2005).
    [CrossRef]
  14. A. E. Siegman, Lasers (Oxford Univ. Press, 1986), Chap. 7 and Chap. 10.
  15. T. Saitoh and T. Mukai, "Gain saturation characteristics of traveling-wave semiconductor laser amplifiers in short optical pulse amplification," IEEE J. Quantum. Electron. 26, 2086-2094 (1990).
    [CrossRef]
  16. Y. Ueno, M. Toyoda, R. Suzuki and Y. Nagasue, "Modeling of the polarization-discriminating symmetric-Mach-Zehnder-type optical-3R gate scheme and its available degree of random amplitude-noise suppression," Optics Express,  14, 348-360 (2006).
    [CrossRef]
  17. J. Sakaguchi, M.L. Nielsen, T. Ohira, R. Suzuki and Y. Ueno, "Observation of small sub-pulses out of the delayed-interference signal-wavelength converter," Jpn. J. Appl. Phys 44, L1358-1360 (2005).
    [CrossRef]
  18. M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum. Electron. 37, 439-447 (2001).
    [CrossRef]
  19. M. L. Nielsen, J. Mork, R. Suzuki, J. Sakaguchi and Y. Ueno, "Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on highspeed SOA-based all-optical switches," Optics Express 14, 331-347 (2006).
    [CrossRef] [PubMed]

2007

2006

Y. Ueno, M. Toyoda, R. Suzuki and Y. Nagasue, "Modeling of the polarization-discriminating symmetric-Mach-Zehnder-type optical-3R gate scheme and its available degree of random amplitude-noise suppression," Optics Express,  14, 348-360 (2006).
[CrossRef]

M. L. Nielsen, J. Mork, R. Suzuki, J. Sakaguchi and Y. Ueno, "Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on highspeed SOA-based all-optical switches," Optics Express 14, 331-347 (2006).
[CrossRef] [PubMed]

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave. Technol. 24, 230-236 (2006).
[CrossRef]

2005

G. Talli and M.J. Adams, "Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam," Opt. Commun. 245, 363-370 (2005).
[CrossRef]

J. Sakaguchi, M.L. Nielsen, T. Ohira, R. Suzuki and Y. Ueno, "Observation of small sub-pulses out of the delayed-interference signal-wavelength converter," Jpn. J. Appl. Phys 44, L1358-1360 (2005).
[CrossRef]

2003

G. Talli and M.J. Adams, "Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments," Opt. Commun. 218, 161-166 (2003).
[CrossRef]

2002

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photonics Technol. Lett. 14, 12-14 (2002).
[CrossRef]

Y. Ueno, S. Nakamura, and K. Tajima, "Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160-GHz range for use in ultrahigh-speed all-optical signal processing," J. Opt. Soc. Am. B19, 2573-2589 (2002).

2001

Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photonics. Technol. Lett. 13, 469-471 (2001).
[CrossRef]

S. Nakamura, Y. Ueno, and K. Tajima, "168-Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch," IEEE Photonics. Technol. Lett. 13, 1091-1093 (2001).
[CrossRef]

M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum. Electron. 37, 439-447 (2001).
[CrossRef]

2000

K. E. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Selected Topics in Quantum Electron. 6, 1428-1435 (2000).Q1
[CrossRef]

1994

1990

T. Saitoh and T. Mukai, "Gain saturation characteristics of traveling-wave semiconductor laser amplifiers in short optical pulse amplification," IEEE J. Quantum. Electron. 26, 2086-2094 (1990).
[CrossRef]

IEEE J. Quantum. Electron.

T. Saitoh and T. Mukai, "Gain saturation characteristics of traveling-wave semiconductor laser amplifiers in short optical pulse amplification," IEEE J. Quantum. Electron. 26, 2086-2094 (1990).
[CrossRef]

M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum. Electron. 37, 439-447 (2001).
[CrossRef]

IEEE J. Selected Topics in Quantum Electron.

K. E. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Selected Topics in Quantum Electron. 6, 1428-1435 (2000).Q1
[CrossRef]

IEEE Photonics Technol. Lett.

J. L. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold and C. H. Joyner, "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength," IEEE Photonics Technol. Lett. 14, 12-14 (2002).
[CrossRef]

IEEE Photonics. Technol. Lett.

Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photonics. Technol. Lett. 13, 469-471 (2001).
[CrossRef]

S. Nakamura, Y. Ueno, and K. Tajima, "168-Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch," IEEE Photonics. Technol. Lett. 13, 1091-1093 (2001).
[CrossRef]

J. Lightwave Technol.

J. Lightwave. Technol.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave. Technol. 24, 230-236 (2006).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A.M.J. Koonen, G.D. Khoe, X. Shu, I. Bennion and H.J.S. Dorren, "Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier," J. Lightwave. Technol. 25, 103-108 (2007).
[CrossRef]

J. Opt. Soc. Am.

Y. Ueno, S. Nakamura, and K. Tajima, "Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160-GHz range for use in ultrahigh-speed all-optical signal processing," J. Opt. Soc. Am. B19, 2573-2589 (2002).

Jpn. J. Appl. Phys

J. Sakaguchi, M.L. Nielsen, T. Ohira, R. Suzuki and Y. Ueno, "Observation of small sub-pulses out of the delayed-interference signal-wavelength converter," Jpn. J. Appl. Phys 44, L1358-1360 (2005).
[CrossRef]

Opt. Commun.

G. Talli and M.J. Adams, "Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments," Opt. Commun. 218, 161-166 (2003).
[CrossRef]

G. Talli and M.J. Adams, "Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam," Opt. Commun. 245, 363-370 (2005).
[CrossRef]

Opt. Lett.

Optics Express

M. L. Nielsen, J. Mork, R. Suzuki, J. Sakaguchi and Y. Ueno, "Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on highspeed SOA-based all-optical switches," Optics Express 14, 331-347 (2006).
[CrossRef] [PubMed]

Y. Ueno, M. Toyoda, R. Suzuki and Y. Nagasue, "Modeling of the polarization-discriminating symmetric-Mach-Zehnder-type optical-3R gate scheme and its available degree of random amplitude-noise suppression," Optics Express,  14, 348-360 (2006).
[CrossRef]

Other

S. Nakamura, Y. Ueno, K. Tajima, "Error-free all-optical demultiplexing at 336 Gb/s with a hybrid-integrated symmetric-Mach-Zehnder switch," presented at Optical Fiber Communications Conference (2002), FD3.

A. E. Siegman, Lasers (Oxford Univ. Press, 1986), Chap. 7 and Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Loss model of injected carriers. η1 to η3 stand for conversion efficiencies.

Fig. 2.
Fig. 2.

Measured ASE spectra of SOA samples at I OP = 200 mA.

Fig. 3.
Fig. 3.

Experimental setup for SOA chip characterization. VOA: variable optical attenuator, Pol: polarizer, PC: polarization controller, PBS: polarizing beam splitter, BPF: band-pass filter, MLFL: mode-locked fiber laser

Fig. 4.
Fig. 4.

Measured small-signal gains of SOA samples versus current. Sample details are given in Table 1. Gains were measured with cw light, λ2=1548 nm. Input cw power into each chip was kept under -30 dBm.

Fig. 5.
Fig. 5.

Typical SOA chip characteristics (a) Gain-saturation profiles for cw light. (b) Gain-saturation profiles for ultrafast pulses (2-ps width, 0.65-GHz repetition). The dashed lines in (b) show the theoretical fit using Eq. (2.4). (c) Typical XGM profiles measured with a cross correlator. The cw-probe intensity and pulse energy into the chip were set to -25 dBm and 10 fJ, respectively.

Fig. 6.
Fig. 6.

Measured SOA parameters used for evaluation of the conversion efficiencies (a) Saturation power of SOA chips versus current for cw light. (b) Saturation energy for ultrafast pulses (2-ps width, 0.65 GHz). (c) Carrier-recovery rate 1/τC.

Fig. 7.
Fig. 7.

Measured dependence of SOA sample conversion efficiency on I OP (a): η1, (b): η2, (c): η3, according to Eqs. (2.2) to (2.5), and (d): total efficiency ηT1×η2×η3.

Fig. 8.
Fig. 8.

Comparison of measured and calculated SOA properties under holding-beam injection. (a) Cw-gain saturation, (b) effective carrier recovery rate 1/τ eff, (c) gain saturation for a 2-ps pulse, and (d) nonlinear phase shift ΔΦ caused by ultrafast pulses.

Fig. 9.
Fig. 9.

Calculated power consumption of SOAs versus their maximum operating frequencies when SOA parameters are independent of I OP (Table 3)

Fig. 10.
Fig. 10.

SOA electrical-power consumption versus carrier recovery rate under holding-beam acceleration. Calculated results using the measured parameters for each sample and measured results for sample B#3 are shown. A control pulse with a 2-ps width and 340-fJ energy was used.

Tables (3)

Tables Icon

Table 1. List of SOA samples and their structure

Tables Icon

Table 2. Estimated refractive index change of each sample, and related parameters.

Tables Icon

Table 3. Parameters assumed for Fig. 9

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

N = I OP q τ C .
η 1 = N ex N = I OP I 0 I OP .
η 2 = N cw N ex , N cw = P sat cw τ C hv In G 0 cw .
G pulse ( E out ) = E out E sat pulse 1 In { exp ( E out E sat pulse ) + G 0 1 } In G 0 .
η 3 = N pulse N cw , N pulse = E sat pulse hv In G 0 pulse .
N ex = I 0 I OP τ c ( I ) q dI ,
dn pulse dt = I OP q V η 1 η 2 η 3 n pulse τ c η 3 { exp ( Γ L eff dg cw dn n pulse ) 1 } P cw ħ ωV
{ exp ( Γ L eff dg pulse dn n pulse ) 1 } P pulse ħ ωV
ΔΦ = k 0 dn r dn Γ L eff Δ n pulse
G eq = exp ( Γ L eff dg dn n eq ) .
Δ n pulse G pe 1 ħ ωV E pulse
G eq G pe 1 + ħ ωV ΔΦ E pulse Γ L eff k 0 dn r dn .
P cw ħ ωV η T I OP η 3 ( G eq 1 ) qV
d ( Δ n ( t ) ) dt = Δ n τ c η 3 G eq Γ L eff ħ ωV dg dn P CW Δ n
B 1 τ c ( I OP ) + G eq G eq 1 Γ L eff qV dg dn ( I OP ) · η T ( I OP ) · I OP .
P OP R ( G eq 1 G eq qV Γ L eff ) 2 ( dg dn ) 2 η T 2 B 2
= cons tan t × B 2 .

Metrics