J. Fan and A. Migdall, “A broadband high spectral brightness fiber-based two-photon source,” Opt. Express 15, 2915–2920 (2007).

[CrossRef]
[PubMed]

See, for example, the review by P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).

[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).

[CrossRef]

K. A. O’Donnell and A. B. U’Ren, “Observation of ultrabroadband, beamlike parametric downconversion,” Opt. Lett. 32, 817–819 (2007).

[CrossRef]
[PubMed]

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707–719 (2007).

[CrossRef]

J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, “Spectrally flat and broadband double-pumped fiber optical parametric amplifiers,” Opt. Express 15, 5288–5309 (2007).

[CrossRef]

R. J. Kruhlak, G. K. L. Wong, J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett. 31, 1379–1381 (2006).

[CrossRef]
[PubMed]

A. B. U’Ren, R. Erdmann, M. De la Cruz, and I. A. Walmsley, ”Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett. 97, 223602 (2006).

[CrossRef]
[PubMed]

C. J. McKinstrie, H. Kogelnik, and L. Schenato, “Four-wave mixing in a rapidly-spun fiber,” Opt. Express 15, 8516–8534 (2006). This paper also reviews scalar and vector FWM in strongly-birefringent and randomly-birefringent fibers.

[CrossRef]

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. Ford, S. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18, 2445–2447 (2006).

[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation by four-wave mixing in optical fibers,” Opt. Lett. 31, 1286–1288 (2006).

[CrossRef]
[PubMed]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).

[CrossRef]

H. Takesue and K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).

[CrossRef]
[PubMed]

J. P. Torres, F. Macia, S. Carrasco, and L. Torner, “Engineering the frequency correlations of entangled two-photon states by achromatic phase matching” Opt. Lett. 30, 314 (2005)

[CrossRef]
[PubMed]

J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).

[CrossRef]
[PubMed]

J. Fan and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses,” Opt. Express 13, 5777–5782 (2005).

[CrossRef]
[PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parmametric down-conversion in a distributed microcavity,” Phys. Rev. A 72, 023825 (2005).

[CrossRef]

G. K. L. Wong, A. Y. H. Chen, S. W. Ha, R. J. Kruhlak, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and N. Y. Joly, “Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability,” Opt. Express 13, 8662–8670 (2005).

[CrossRef]
[PubMed]

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, and Miguel V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667–1669 (2004).

[CrossRef]

Z.D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Polarization-Entangled Photon Pairs with Arbitrary Joint Spectrum” Phys. Rev. A 70, 052317 (2004)

[CrossRef]

C. J. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12, 4973–4979 (2004).

[CrossRef]
[PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I.A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93, 093601 (2004).

[CrossRef]
[PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).

[CrossRef]
[PubMed]

A.B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing” Quantum Information and Computation 3, 480 (2003)

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).

[CrossRef]
[PubMed]

P. Russell, “Photonic Crystal Fiber,” Science 299, 358–362 (2003).

[CrossRef]
[PubMed]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39, 838–839 (2003).

[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).

[CrossRef]
[PubMed]

K. P. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11, 1503–1509 (2003).

[CrossRef]
[PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).

[CrossRef]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).

[CrossRef]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).

[CrossRef]

V. Giovanetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417–419 (2001).

[CrossRef]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).

[CrossRef]
[PubMed]

M. Yu, C. J. McKinstrie, and G. P. Agrawal, “Modulational instabilities in dispersion-flattened fibers,” Phys. Rev. E 52, 1072–1080 (1995).

[CrossRef]

A. L. Berkhoer and V. E. Zakharov, “Self-excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486–493 (1970).

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of Tunable Optical Parametric Fluorescence,” Phys. Rev. Lett. 18, 732–734 (1967).

[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).

[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation by four-wave mixing in optical fibers,” Opt. Lett. 31, 1286–1288 (2006).

[CrossRef]
[PubMed]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39, 838–839 (2003).

[CrossRef]

M. Yu, C. J. McKinstrie, and G. P. Agrawal, “Modulational instabilities in dispersion-flattened fibers,” Phys. Rev. E 52, 1072–1080 (1995).

[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 4th Ed. (Elsevier, 2007).

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, Phys. Rev. Lett.94, 083601 (2005)

[CrossRef]
[PubMed]

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. Ford, S. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18, 2445–2447 (2006).

[CrossRef]

R. Jiang, N. Alic, C. J. McKinstrie, and S. Radic, “Two-pump parametric amplifier with 40 dB of equalized gain over a bandwidth of 50 nm,” Proc. OFC2007, paper OWB2.

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, and Miguel V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667–1669 (2004).

[CrossRef]

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707–719 (2007).

[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parmametric down-conversion in a distributed microcavity,” Phys. Rev. A 72, 023825 (2005).

[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I.A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93, 093601 (2004).

[CrossRef]
[PubMed]

A.B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing” Quantum Information and Computation 3, 480 (2003)

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).

[CrossRef]

A. L. Berkhoer and V. E. Zakharov, “Self-excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486–493 (1970).

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of Tunable Optical Parametric Fluorescence,” Phys. Rev. Lett. 18, 732–734 (1967).

[CrossRef]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39, 838–839 (2003).

[CrossRef]

G. K. L. Wong, A. Y. H. Chen, S. W. Ha, R. J. Kruhlak, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and N. Y. Joly, “Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability,” Opt. Express 13, 8662–8670 (2005).

[CrossRef]
[PubMed]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).

[CrossRef]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).

[CrossRef]
[PubMed]

J. Chen, K. F. Lee, and P. Kumar R, “Quantum theory of degenerate χ(3) two-photon state,” e-print arXiv:quant-ph/0702176v1.

R. J. Kruhlak, G. K. L. Wong, J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett. 31, 1379–1381 (2006).

[CrossRef]
[PubMed]

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, and Miguel V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667–1669 (2004).

[CrossRef]

A. B. U’Ren, R. Erdmann, M. De la Cruz, and I. A. Walmsley, ”Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett. 97, 223602 (2006).

[CrossRef]
[PubMed]

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, and Miguel V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667–1669 (2004).

[CrossRef]

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, and Miguel V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667–1669 (2004).

[CrossRef]

See, for example, the review by P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).

[CrossRef]

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707–719 (2007).

[CrossRef]

A. B. U’Ren, R. Erdmann, M. De la Cruz, and I. A. Walmsley, ”Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett. 97, 223602 (2006).

[CrossRef]
[PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. Ford, S. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18, 2445–2447 (2006).

[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).

[CrossRef]

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, Phys. Rev. Lett.94, 083601 (2005)

[CrossRef]
[PubMed]

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. Ford, S. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18, 2445–2447 (2006).

[CrossRef]

V. Giovanetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417–419 (2001).

[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).

[CrossRef]

G. K. L. Wong, A. Y. H. Chen, S. W. Ha, R. J. Kruhlak, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and N. Y. Joly, “Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability,” Opt. Express 13, 8662–8670 (2005).

[CrossRef]
[PubMed]

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of Tunable Optical Parametric Fluorescence,” Phys. Rev. Lett. 18, 732–734 (1967).

[CrossRef]

R. J. Kruhlak, G. K. L. Wong, J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett. 31, 1379–1381 (2006).

[CrossRef]
[PubMed]

G. K. L. Wong, A. Y. H. Chen, S. W. Ha, R. J. Kruhlak, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and N. Y. Joly, “Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability,” Opt. Express 13, 8662–8670 (2005).

[CrossRef]
[PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).

[CrossRef]
[PubMed]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).

[CrossRef]
[PubMed]

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. Ford, S. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18, 2445–2447 (2006).

[CrossRef]

R. Jiang, N. Alic, C. J. McKinstrie, and S. Radic, “Two-pump parametric amplifier with 40 dB of equalized gain over a bandwidth of 50 nm,” Proc. OFC2007, paper OWB2.

R. J. Kruhlak, G. K. L. Wong, J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett. 31, 1379–1381 (2006).

[CrossRef]
[PubMed]

G. K. L. Wong, A. Y. H. Chen, S. W. Ha, R. J. Kruhlak, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and N. Y. Joly, “Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability,” Opt. Express 13, 8662–8670 (2005).

[CrossRef]
[PubMed]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39, 838–839 (2003).

[CrossRef]

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, Phys. Rev. Lett.94, 083601 (2005)

[CrossRef]
[PubMed]

R. J. Kruhlak, G. K. L. Wong, J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett. 31, 1379–1381 (2006).

[CrossRef]
[PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).

[CrossRef]
[PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell. “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).

[CrossRef]
[PubMed]

C. J. McKinstrie, H. Kogelnik, and L. Schenato, “Four-wave mixing in a rapidly-spun fiber,” Opt. Express 15, 8516–8534 (2006). This paper also reviews scalar and vector FWM in strongly-birefringent and randomly-birefringent fibers.

[CrossRef]

See, for example, the review by P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).

[CrossRef]

R. J. Kruhlak, G. K. L. Wong, J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett. 31, 1379–1381 (2006).

[CrossRef]
[PubMed]

G. K. L. Wong, A. Y. H. Chen, S. W. Ha, R. J. Kruhlak, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and N. Y. Joly, “Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability,” Opt. Express 13, 8662–8670 (2005).

[CrossRef]
[PubMed]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).

[CrossRef]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).

[CrossRef]
[PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).

[CrossRef]

J. Chen, K. F. Lee, and P. Kumar R, “Quantum theory of degenerate χ(3) two-photon state,” e-print arXiv:quant-ph/0702176v1.

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, Phys. Rev. Lett.94, 083601 (2005)

[CrossRef]
[PubMed]

J. Chen, K. F. Lee, and P. Kumar R, “Quantum theory of degenerate χ(3) two-photon state,” e-print arXiv:quant-ph/0702176v1.

R. J. Kruhlak, G. K. L. Wong, J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett. 31, 1379–1381 (2006).

[CrossRef]
[PubMed]

G. K. L. Wong, A. Y. H. Chen, S. W. Ha, R. J. Kruhlak, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and N. Y. Joly, “Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability,” Opt. Express 13, 8662–8670 (2005).

[CrossRef]
[PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).

[CrossRef]
[PubMed]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).

[CrossRef]
[PubMed]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).

[CrossRef]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).

[CrossRef]
[PubMed]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).

[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation by four-wave mixing in optical fibers,” Opt. Lett. 31, 1286–1288 (2006).

[CrossRef]
[PubMed]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39, 838–839 (2003).

[CrossRef]

V. Giovanetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417–419 (2001).

[CrossRef]

Peter J. Mosley, Jeff S. Lundeen, Brian J. Smith, Ian A. Walmsley, Piotr Wasylczyk, Alfred B. U’Ren, and Christine Silberhorn, in Coherence and Quantum Optics IX, (Kluwer Academic/Plenum, New York) (accepted).

V. Giovanetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417–419 (2001).

[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. Ford, S. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18, 2445–2447 (2006).

[CrossRef]

C. J. McKinstrie, H. Kogelnik, and L. Schenato, “Four-wave mixing in a rapidly-spun fiber,” Opt. Express 15, 8516–8534 (2006). This paper also reviews scalar and vector FWM in strongly-birefringent and randomly-birefringent fibers.

[CrossRef]

C. J. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12, 4973–4979 (2004).

[CrossRef]
[PubMed]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39, 838–839 (2003).

[CrossRef]

M. Yu, C. J. McKinstrie, and G. P. Agrawal, “Modulational instabilities in dispersion-flattened fibers,” Phys. Rev. E 52, 1072–1080 (1995).

[CrossRef]

R. Jiang, N. Alic, C. J. McKinstrie, and S. Radic, “Two-pump parametric amplifier with 40 dB of equalized gain over a bandwidth of 50 nm,” Proc. OFC2007, paper OWB2.

See, for example, the review by P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).

[CrossRef]

Peter J. Mosley, Jeff S. Lundeen, Brian J. Smith, Ian A. Walmsley, Piotr Wasylczyk, Alfred B. U’Ren, and Christine Silberhorn, in Coherence and Quantum Optics IX, (Kluwer Academic/Plenum, New York) (accepted).

See, for example, the review by P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).

[CrossRef]

R. J. Kruhlak, G. K. L. Wong, J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett. 31, 1379–1381 (2006).

[CrossRef]
[PubMed]

G. K. L. Wong, A. Y. H. Chen, S. W. Ha, R. J. Kruhlak, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and N. Y. Joly, “Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability,” Opt. Express 13, 8662–8670 (2005).

[CrossRef]
[PubMed]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).

[CrossRef]
[PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).

[CrossRef]
[PubMed]

See, for example, the review by P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).

[CrossRef]

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. Ford, S. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18, 2445–2447 (2006).

[CrossRef]

M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parmametric down-conversion in a distributed microcavity,” Phys. Rev. A 72, 023825 (2005).

[CrossRef]

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707–719 (2007).

[CrossRef]

K. A. O’Donnell and A. B. U’Ren, “Observation of ultrabroadband, beamlike parametric downconversion,” Opt. Lett. 32, 817–819 (2007).

[CrossRef]
[PubMed]

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, and Miguel V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667–1669 (2004).

[CrossRef]

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of Tunable Optical Parametric Fluorescence,” Phys. Rev. Lett. 18, 732–734 (1967).

[CrossRef]

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. Ford, S. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18, 2445–2447 (2006).

[CrossRef]

C. J. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12, 4973–4979 (2004).

[CrossRef]
[PubMed]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39, 838–839 (2003).

[CrossRef]

R. Jiang, N. Alic, C. J. McKinstrie, and S. Radic, “Two-pump parametric amplifier with 40 dB of equalized gain over a bandwidth of 50 nm,” Proc. OFC2007, paper OWB2.

See, for example, the review by P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).

[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parmametric down-conversion in a distributed microcavity,” Phys. Rev. A 72, 023825 (2005).

[CrossRef]

J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).

[CrossRef]
[PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).

[CrossRef]
[PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell. “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).

[CrossRef]
[PubMed]

Z.D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Polarization-Entangled Photon Pairs with Arbitrary Joint Spectrum” Phys. Rev. A 70, 052317 (2004)

[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).

[CrossRef]
[PubMed]

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. Ford, S. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18, 2445–2447 (2006).

[CrossRef]

C. J. McKinstrie, H. Kogelnik, and L. Schenato, “Four-wave mixing in a rapidly-spun fiber,” Opt. Express 15, 8516–8534 (2006). This paper also reviews scalar and vector FWM in strongly-birefringent and randomly-birefringent fibers.

[CrossRef]

Z.D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Polarization-Entangled Photon Pairs with Arbitrary Joint Spectrum” Phys. Rev. A 70, 052317 (2004)

[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).

[CrossRef]
[PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).

[CrossRef]

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707–719 (2007).

[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I.A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93, 093601 (2004).

[CrossRef]
[PubMed]

Peter J. Mosley, Jeff S. Lundeen, Brian J. Smith, Ian A. Walmsley, Piotr Wasylczyk, Alfred B. U’Ren, and Christine Silberhorn, in Coherence and Quantum Optics IX, (Kluwer Academic/Plenum, New York) (accepted).

Peter J. Mosley, Jeff S. Lundeen, Brian J. Smith, Ian A. Walmsley, Piotr Wasylczyk, Alfred B. U’Ren, and Christine Silberhorn, in Coherence and Quantum Optics IX, (Kluwer Academic/Plenum, New York) (accepted).

R. H. Stolen, M. A. Bosch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett. 6, 213–215 (1981).

[CrossRef]
[PubMed]

R. H. Stolen, “Fundamentals of Raman amplification in fibers,” in Raman Amplifiers for Telecommunications 1, edited by M. N. Islam (Springer, 2003), pp. 35–59.

Z.D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Polarization-Entangled Photon Pairs with Arbitrary Joint Spectrum” Phys. Rev. A 70, 052317 (2004)

[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).

[CrossRef]
[PubMed]

K. A. O’Donnell and A. B. U’Ren, “Observation of ultrabroadband, beamlike parametric downconversion,” Opt. Lett. 32, 817–819 (2007).

[CrossRef]
[PubMed]

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707–719 (2007).

[CrossRef]

A. B. U’Ren, R. Erdmann, M. De la Cruz, and I. A. Walmsley, ”Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett. 97, 223602 (2006).

[CrossRef]
[PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I.A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93, 093601 (2004).

[CrossRef]
[PubMed]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).

[CrossRef]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).

[CrossRef]

A.B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing” Quantum Information and Computation 3, 480 (2003)

Peter J. Mosley, Jeff S. Lundeen, Brian J. Smith, Ian A. Walmsley, Piotr Wasylczyk, Alfred B. U’Ren, and Christine Silberhorn, in Coherence and Quantum Optics IX, (Kluwer Academic/Plenum, New York) (accepted).

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).

[CrossRef]

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707–719 (2007).

[CrossRef]

A. B. U’Ren, R. Erdmann, M. De la Cruz, and I. A. Walmsley, ”Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett. 97, 223602 (2006).

[CrossRef]
[PubMed]

M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parmametric down-conversion in a distributed microcavity,” Phys. Rev. A 72, 023825 (2005).

[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

A.B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing” Quantum Information and Computation 3, 480 (2003)

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).

[CrossRef]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).

[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I.A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93, 093601 (2004).

[CrossRef]
[PubMed]

Peter J. Mosley, Jeff S. Lundeen, Brian J. Smith, Ian A. Walmsley, Piotr Wasylczyk, Alfred B. U’Ren, and Christine Silberhorn, in Coherence and Quantum Optics IX, (Kluwer Academic/Plenum, New York) (accepted).

Z.D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Polarization-Entangled Photon Pairs with Arbitrary Joint Spectrum” Phys. Rev. A 70, 052317 (2004)

[CrossRef]

Peter J. Mosley, Jeff S. Lundeen, Brian J. Smith, Ian A. Walmsley, Piotr Wasylczyk, Alfred B. U’Ren, and Christine Silberhorn, in Coherence and Quantum Optics IX, (Kluwer Academic/Plenum, New York) (accepted).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, Phys. Rev. Lett.94, 083601 (2005)

[CrossRef]
[PubMed]

R. J. Kruhlak, G. K. L. Wong, J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett. 31, 1379–1381 (2006).

[CrossRef]
[PubMed]

G. K. L. Wong, A. Y. H. Chen, S. W. Ha, R. J. Kruhlak, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and N. Y. Joly, “Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability,” Opt. Express 13, 8662–8670 (2005).

[CrossRef]
[PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).

[CrossRef]
[PubMed]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).

[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation by four-wave mixing in optical fibers,” Opt. Lett. 31, 1286–1288 (2006).

[CrossRef]
[PubMed]

M. Yu, C. J. McKinstrie, and G. P. Agrawal, “Modulational instabilities in dispersion-flattened fibers,” Phys. Rev. E 52, 1072–1080 (1995).

[CrossRef]

A. L. Berkhoer and V. E. Zakharov, “Self-excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486–493 (1970).

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707–719 (2007).

[CrossRef]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett. 39, 838–839 (2003).

[CrossRef]

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. Ford, S. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18, 2445–2447 (2006).

[CrossRef]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002).

[CrossRef]

A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, J. L. Cruz, and Miguel V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667–1669 (2004).

[CrossRef]

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707–719 (2007).

[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

V. Giovanetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417–419 (2001).

[CrossRef]

C. J. McKinstrie, H. Kogelnik, and L. Schenato, “Four-wave mixing in a rapidly-spun fiber,” Opt. Express 15, 8516–8534 (2006). This paper also reviews scalar and vector FWM in strongly-birefringent and randomly-birefringent fibers.

[CrossRef]

K. P. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11, 1503–1509 (2003).

[CrossRef]
[PubMed]

C. J. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12, 4973–4979 (2004).

[CrossRef]
[PubMed]

J. Fan and A. Migdall, “A broadband high spectral brightness fiber-based two-photon source,” Opt. Express 15, 2915–2920 (2007).

[CrossRef]
[PubMed]

J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).

[CrossRef]
[PubMed]

J. Fan and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses,” Opt. Express 13, 5777–5782 (2005).

[CrossRef]
[PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).

[CrossRef]
[PubMed]

G. K. L. Wong, A. Y. H. Chen, S. W. Ha, R. J. Kruhlak, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and N. Y. Joly, “Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability,” Opt. Express 13, 8662–8670 (2005).

[CrossRef]
[PubMed]

H. Takesue and K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).

[CrossRef]
[PubMed]

J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, “Spectrally flat and broadband double-pumped fiber optical parametric amplifiers,” Opt. Express 15, 5288–5309 (2007).

[CrossRef]

K. A. O’Donnell and A. B. U’Ren, “Observation of ultrabroadband, beamlike parametric downconversion,” Opt. Lett. 32, 817–819 (2007).

[CrossRef]
[PubMed]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).

[CrossRef]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).

[CrossRef]
[PubMed]

R. H. Stolen, M. A. Bosch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett. 6, 213–215 (1981).

[CrossRef]
[PubMed]

R. J. Kruhlak, G. K. L. Wong, J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett. 31, 1379–1381 (2006).

[CrossRef]
[PubMed]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).

[CrossRef]
[PubMed]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation by four-wave mixing in optical fibers,” Opt. Lett. 31, 1286–1288 (2006).

[CrossRef]
[PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell. “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).

[CrossRef]
[PubMed]

J. P. Torres, F. Macia, S. Carrasco, and L. Torner, “Engineering the frequency correlations of entangled two-photon states by achromatic phase matching” Opt. Lett. 30, 314 (2005)

[CrossRef]
[PubMed]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).

[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).

[CrossRef]

Z.D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Polarization-Entangled Photon Pairs with Arbitrary Joint Spectrum” Phys. Rev. A 70, 052317 (2004)

[CrossRef]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).

[CrossRef]

M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parmametric down-conversion in a distributed microcavity,” Phys. Rev. A 72, 023825 (2005).

[CrossRef]

M. Yu, C. J. McKinstrie, and G. P. Agrawal, “Modulational instabilities in dispersion-flattened fibers,” Phys. Rev. E 52, 1072–1080 (1995).

[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I.A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93, 093601 (2004).

[CrossRef]
[PubMed]

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of Tunable Optical Parametric Fluorescence,” Phys. Rev. Lett. 18, 732–734 (1967).

[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).

[CrossRef]
[PubMed]

A. B. U’Ren, R. Erdmann, M. De la Cruz, and I. A. Walmsley, ”Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett. 97, 223602 (2006).

[CrossRef]
[PubMed]

A.B. U’Ren, K. Banaszek, and I. A. Walmsley, “Photon engineering for quantum information processing” Quantum Information and Computation 3, 480 (2003)

See, for example, the review by P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).

[CrossRef]

A. L. Berkhoer and V. E. Zakharov, “Self-excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486–493 (1970).

Such a state is typically referred to as highly entangled, but one should keep in mind that the large vacuum component of the state renders this “entanglement” useful only in a post-selection experiment.

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, Phys. Rev. Lett.94, 083601 (2005)

[CrossRef]
[PubMed]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

J. Chen, K. F. Lee, and P. Kumar R, “Quantum theory of degenerate χ(3) two-photon state,” e-print arXiv:quant-ph/0702176v1.

G. P. Agrawal, Nonlinear Fiber Optics, 4th Ed. (Elsevier, 2007).

Peter J. Mosley, Jeff S. Lundeen, Brian J. Smith, Ian A. Walmsley, Piotr Wasylczyk, Alfred B. U’Ren, and Christine Silberhorn, in Coherence and Quantum Optics IX, (Kluwer Academic/Plenum, New York) (accepted).

R. H. Stolen, “Fundamentals of Raman amplification in fibers,” in Raman Amplifiers for Telecommunications 1, edited by M. N. Islam (Springer, 2003), pp. 35–59.

R. Jiang, N. Alic, C. J. McKinstrie, and S. Radic, “Two-pump parametric amplifier with 40 dB of equalized gain over a bandwidth of 50 nm,” Proc. OFC2007, paper OWB2.