Abstract

Analyzing the propagation dynamics of a light beam of arbitrary linear input polarization in an electro-activated photorefractive soliton we are able to experimentally find the conditions that separate its linear polarization components, mapping them into spatially distinct regions at the crystal output. Extending experiments to the switching scheme based on two oppositely biased solitons, we are able to transform this spatial separation into a separation of two distinct guided modes. The result is a miniaturized electro-optic polarization separator.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
    [CrossRef] [PubMed]
  2. M. Morin, G. Duree, G. Salamo, and M. Segev, "Wave-guides formed by quasi-steady-state photorefractive spatial solitons," Opt. Lett. 20, 2066-2068 (1995).
    [CrossRef] [PubMed]
  3. M. F. Shih, M. Segev, and G. Salamo, "Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons," Opt. Lett. 21, 931-933 (1996).
    [CrossRef] [PubMed]
  4. E. DelRe, M. Tamburrini, M. Segev, E. Refaeli, and A. J. Agranat, "Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate," Appl. Phys. Lett. 73, 16-18 (1998).
    [CrossRef]
  5. M. Chauvet, A. Q. Gou, G. Y. Fu, and G. Salamo, "Electrically switched photoinduced waveguide in unpoled strontium barium niobate," J. Appl. Phys. 99, 113107 (2006).
    [CrossRef]
  6. M. Asaro, M. Sheldon, Z. G. Chen, O. Ostroverkhova, and W. E. Moerner, "Soliton-induced waveguides in an organic photorefractive glass," Opt. Lett. 30, 519-521 (2005).
    [CrossRef] [PubMed]
  7. E. DelRe, M. Tamburrini, and A. J. Agranat, "Soliton electro-optic effects in paraelectrics," Opt.Lett. 25, 963-965 (2000).
    [CrossRef]
  8. E. DelRe, B. Crosignani, P. Di Porto, E. Palange, and A. J. Agranat, "Electro-optic beam manipulation through photorefractive needles," Opt. Lett. 27, 2188-2190 (2002).
    [CrossRef]
  9. A. Bitman, N. Sapiens, L. Secundo, A. J. Agranat, G. Bartal, and M. Segev, "Electroholographic tunable volume grating in the (g44) configuration," Opt. Lett. 31, 2849-2851 (2006).
    [CrossRef] [PubMed]
  10. M. Segev, G. C. Valley, S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, "Vector photorefractive spatial solitons," Opt. Lett. 20, 1764-1766 (1995).
    [CrossRef] [PubMed]
  11. C. Crognale and L. Rosa, "Vector analysis of the space-charge field in nonconventionally biased photorefractive crystals," J. Lightwave Technol. 23, 2175-2185 (2005).
    [CrossRef]
  12. P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D. Yang, J. Xu, and Z. Chen, "Elliptical solitons in nonconventionally biased photorefractive crystals," Opt. Express 15, 536-544 (2007).
    [CrossRef]
  13. A. Agranat, R. Hofmeister, and A. Yariv, Opt. Lett. 17, 713-715 (1992)
    [CrossRef] [PubMed]
  14. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 2002).
  15. A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric-field," Phys. Rev. A 51, 1520-1531 (1995).
    [CrossRef] [PubMed]
  16. E. DelRe, A. Ciattoni, and A. J. Agranat, "Anisotropic charge displacement supporting isolated photorefractive optical needles," Opt. Lett. 26, 908-910 (2001).
    [CrossRef]
  17. A. Zozulya and D. Anderson, "Nonstationary self-focusing in photorefractive media," Opt. Lett. 20, 837-839 (1995).
    [CrossRef] [PubMed]
  18. C. Dari-Salisburgo, E. DelRe, and E. Palange, "Molding and stretched evolution of optical solitons in cumulative nonlinearities," Phys. Rev. Lett. 91, 263903 (2003).
    [CrossRef]
  19. S. Gatz and J. Herrmann, "Anisotropy, nonlocality, and space-charge field displacement in (2+1)-dimensional selftrapping in biased photorefractive crystals," Opt. Lett. 23, 1176-1178 (1998).
    [CrossRef]
  20. E. DelRe, A. D’Ercole, E. Palange, and A. J. Agranat, "Observation of soliton ridge states for the self-imprinting of fiber-slab couplers," Appl. Phys. Lett. 86, 191110 (2005).
    [CrossRef]

2007 (1)

P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D. Yang, J. Xu, and Z. Chen, "Elliptical solitons in nonconventionally biased photorefractive crystals," Opt. Express 15, 536-544 (2007).
[CrossRef]

2006 (2)

M. Chauvet, A. Q. Gou, G. Y. Fu, and G. Salamo, "Electrically switched photoinduced waveguide in unpoled strontium barium niobate," J. Appl. Phys. 99, 113107 (2006).
[CrossRef]

A. Bitman, N. Sapiens, L. Secundo, A. J. Agranat, G. Bartal, and M. Segev, "Electroholographic tunable volume grating in the (g44) configuration," Opt. Lett. 31, 2849-2851 (2006).
[CrossRef] [PubMed]

2005 (3)

2003 (1)

C. Dari-Salisburgo, E. DelRe, and E. Palange, "Molding and stretched evolution of optical solitons in cumulative nonlinearities," Phys. Rev. Lett. 91, 263903 (2003).
[CrossRef]

2002 (1)

2001 (1)

2000 (1)

E. DelRe, M. Tamburrini, and A. J. Agranat, "Soliton electro-optic effects in paraelectrics," Opt.Lett. 25, 963-965 (2000).
[CrossRef]

1998 (2)

E. DelRe, M. Tamburrini, M. Segev, E. Refaeli, and A. J. Agranat, "Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate," Appl. Phys. Lett. 73, 16-18 (1998).
[CrossRef]

S. Gatz and J. Herrmann, "Anisotropy, nonlocality, and space-charge field displacement in (2+1)-dimensional selftrapping in biased photorefractive crystals," Opt. Lett. 23, 1176-1178 (1998).
[CrossRef]

1996 (1)

1995 (4)

1992 (2)

A. Agranat, R. Hofmeister, and A. Yariv, Opt. Lett. 17, 713-715 (1992)
[CrossRef] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Agranat, A.

Agranat, A. J.

A. Bitman, N. Sapiens, L. Secundo, A. J. Agranat, G. Bartal, and M. Segev, "Electroholographic tunable volume grating in the (g44) configuration," Opt. Lett. 31, 2849-2851 (2006).
[CrossRef] [PubMed]

E. DelRe, A. D’Ercole, E. Palange, and A. J. Agranat, "Observation of soliton ridge states for the self-imprinting of fiber-slab couplers," Appl. Phys. Lett. 86, 191110 (2005).
[CrossRef]

E. DelRe, B. Crosignani, P. Di Porto, E. Palange, and A. J. Agranat, "Electro-optic beam manipulation through photorefractive needles," Opt. Lett. 27, 2188-2190 (2002).
[CrossRef]

E. DelRe, A. Ciattoni, and A. J. Agranat, "Anisotropic charge displacement supporting isolated photorefractive optical needles," Opt. Lett. 26, 908-910 (2001).
[CrossRef]

E. DelRe, M. Tamburrini, and A. J. Agranat, "Soliton electro-optic effects in paraelectrics," Opt.Lett. 25, 963-965 (2000).
[CrossRef]

E. DelRe, M. Tamburrini, M. Segev, E. Refaeli, and A. J. Agranat, "Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate," Appl. Phys. Lett. 73, 16-18 (1998).
[CrossRef]

Anderson, D.

Anderson, D. Z.

A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric-field," Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

Asaro, M.

Bartal, G.

Bitman, A.

Carvalho, M. I.

Chauvet, M.

M. Chauvet, A. Q. Gou, G. Y. Fu, and G. Salamo, "Electrically switched photoinduced waveguide in unpoled strontium barium niobate," J. Appl. Phys. 99, 113107 (2006).
[CrossRef]

Chen, Z.

P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D. Yang, J. Xu, and Z. Chen, "Elliptical solitons in nonconventionally biased photorefractive crystals," Opt. Express 15, 536-544 (2007).
[CrossRef]

Chen, Z. G.

Christodoulides, D. N.

Ciattoni, A.

Crognale, C.

Crosignani, B.

E. DelRe, B. Crosignani, P. Di Porto, E. Palange, and A. J. Agranat, "Electro-optic beam manipulation through photorefractive needles," Opt. Lett. 27, 2188-2190 (2002).
[CrossRef]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

D’Ercole, A.

E. DelRe, A. D’Ercole, E. Palange, and A. J. Agranat, "Observation of soliton ridge states for the self-imprinting of fiber-slab couplers," Appl. Phys. Lett. 86, 191110 (2005).
[CrossRef]

Dari-Salisburgo, C.

C. Dari-Salisburgo, E. DelRe, and E. Palange, "Molding and stretched evolution of optical solitons in cumulative nonlinearities," Phys. Rev. Lett. 91, 263903 (2003).
[CrossRef]

DelRe, E.

E. DelRe, A. D’Ercole, E. Palange, and A. J. Agranat, "Observation of soliton ridge states for the self-imprinting of fiber-slab couplers," Appl. Phys. Lett. 86, 191110 (2005).
[CrossRef]

C. Dari-Salisburgo, E. DelRe, and E. Palange, "Molding and stretched evolution of optical solitons in cumulative nonlinearities," Phys. Rev. Lett. 91, 263903 (2003).
[CrossRef]

E. DelRe, B. Crosignani, P. Di Porto, E. Palange, and A. J. Agranat, "Electro-optic beam manipulation through photorefractive needles," Opt. Lett. 27, 2188-2190 (2002).
[CrossRef]

E. DelRe, A. Ciattoni, and A. J. Agranat, "Anisotropic charge displacement supporting isolated photorefractive optical needles," Opt. Lett. 26, 908-910 (2001).
[CrossRef]

E. DelRe, M. Tamburrini, and A. J. Agranat, "Soliton electro-optic effects in paraelectrics," Opt.Lett. 25, 963-965 (2000).
[CrossRef]

E. DelRe, M. Tamburrini, M. Segev, E. Refaeli, and A. J. Agranat, "Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate," Appl. Phys. Lett. 73, 16-18 (1998).
[CrossRef]

Di Porto, P.

Duree, G.

Fischer, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Fu, G. Y.

M. Chauvet, A. Q. Gou, G. Y. Fu, and G. Salamo, "Electrically switched photoinduced waveguide in unpoled strontium barium niobate," J. Appl. Phys. 99, 113107 (2006).
[CrossRef]

Gao, Y.

P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D. Yang, J. Xu, and Z. Chen, "Elliptical solitons in nonconventionally biased photorefractive crystals," Opt. Express 15, 536-544 (2007).
[CrossRef]

Gatz, S.

Gou, A. Q.

M. Chauvet, A. Q. Gou, G. Y. Fu, and G. Salamo, "Electrically switched photoinduced waveguide in unpoled strontium barium niobate," J. Appl. Phys. 99, 113107 (2006).
[CrossRef]

Herrmann, J.

Hofmeister, R.

Liu, Q.

P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D. Yang, J. Xu, and Z. Chen, "Elliptical solitons in nonconventionally biased photorefractive crystals," Opt. Express 15, 536-544 (2007).
[CrossRef]

Lou, C.

P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D. Yang, J. Xu, and Z. Chen, "Elliptical solitons in nonconventionally biased photorefractive crystals," Opt. Express 15, 536-544 (2007).
[CrossRef]

Moerner, W. E.

Morin, M.

Ostroverkhova, O.

Palange, E.

E. DelRe, A. D’Ercole, E. Palange, and A. J. Agranat, "Observation of soliton ridge states for the self-imprinting of fiber-slab couplers," Appl. Phys. Lett. 86, 191110 (2005).
[CrossRef]

C. Dari-Salisburgo, E. DelRe, and E. Palange, "Molding and stretched evolution of optical solitons in cumulative nonlinearities," Phys. Rev. Lett. 91, 263903 (2003).
[CrossRef]

E. DelRe, B. Crosignani, P. Di Porto, E. Palange, and A. J. Agranat, "Electro-optic beam manipulation through photorefractive needles," Opt. Lett. 27, 2188-2190 (2002).
[CrossRef]

Refaeli, E.

E. DelRe, M. Tamburrini, M. Segev, E. Refaeli, and A. J. Agranat, "Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate," Appl. Phys. Lett. 73, 16-18 (1998).
[CrossRef]

Rosa, L.

Salamo, G.

Sapiens, N.

Secundo, L.

Segev, M.

Sheldon, M.

Shih, M. F.

Singh, S. R.

Tamburrini, M.

E. DelRe, M. Tamburrini, and A. J. Agranat, "Soliton electro-optic effects in paraelectrics," Opt.Lett. 25, 963-965 (2000).
[CrossRef]

E. DelRe, M. Tamburrini, M. Segev, E. Refaeli, and A. J. Agranat, "Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate," Appl. Phys. Lett. 73, 16-18 (1998).
[CrossRef]

Tan, X.

P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D. Yang, J. Xu, and Z. Chen, "Elliptical solitons in nonconventionally biased photorefractive crystals," Opt. Express 15, 536-544 (2007).
[CrossRef]

Valley, G. C.

Xu, J.

P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D. Yang, J. Xu, and Z. Chen, "Elliptical solitons in nonconventionally biased photorefractive crystals," Opt. Express 15, 536-544 (2007).
[CrossRef]

Yang, D.

P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D. Yang, J. Xu, and Z. Chen, "Elliptical solitons in nonconventionally biased photorefractive crystals," Opt. Express 15, 536-544 (2007).
[CrossRef]

Yariv, A.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

A. Agranat, R. Hofmeister, and A. Yariv, Opt. Lett. 17, 713-715 (1992)
[CrossRef] [PubMed]

Zhang, P.

P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D. Yang, J. Xu, and Z. Chen, "Elliptical solitons in nonconventionally biased photorefractive crystals," Opt. Express 15, 536-544 (2007).
[CrossRef]

Zhao, J.

P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D. Yang, J. Xu, and Z. Chen, "Elliptical solitons in nonconventionally biased photorefractive crystals," Opt. Express 15, 536-544 (2007).
[CrossRef]

Zozulya, A.

Zozulya, A. A.

A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric-field," Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

E. DelRe, A. D’Ercole, E. Palange, and A. J. Agranat, "Observation of soliton ridge states for the self-imprinting of fiber-slab couplers," Appl. Phys. Lett. 86, 191110 (2005).
[CrossRef]

E. DelRe, M. Tamburrini, M. Segev, E. Refaeli, and A. J. Agranat, "Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate," Appl. Phys. Lett. 73, 16-18 (1998).
[CrossRef]

J. Appl. Phys. (1)

M. Chauvet, A. Q. Gou, G. Y. Fu, and G. Salamo, "Electrically switched photoinduced waveguide in unpoled strontium barium niobate," J. Appl. Phys. 99, 113107 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Exp. (1)

P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D. Yang, J. Xu, and Z. Chen, "Elliptical solitons in nonconventionally biased photorefractive crystals," Opt. Express 15, 536-544 (2007).
[CrossRef]

Opt. Lett. (10)

A. Bitman, N. Sapiens, L. Secundo, A. J. Agranat, G. Bartal, and M. Segev, "Electroholographic tunable volume grating in the (g44) configuration," Opt. Lett. 31, 2849-2851 (2006).
[CrossRef] [PubMed]

A. Agranat, R. Hofmeister, and A. Yariv, Opt. Lett. 17, 713-715 (1992)
[CrossRef] [PubMed]

A. Zozulya and D. Anderson, "Nonstationary self-focusing in photorefractive media," Opt. Lett. 20, 837-839 (1995).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, "Vector photorefractive spatial solitons," Opt. Lett. 20, 1764-1766 (1995).
[CrossRef] [PubMed]

M. Morin, G. Duree, G. Salamo, and M. Segev, "Wave-guides formed by quasi-steady-state photorefractive spatial solitons," Opt. Lett. 20, 2066-2068 (1995).
[CrossRef] [PubMed]

S. Gatz and J. Herrmann, "Anisotropy, nonlocality, and space-charge field displacement in (2+1)-dimensional selftrapping in biased photorefractive crystals," Opt. Lett. 23, 1176-1178 (1998).
[CrossRef]

M. F. Shih, M. Segev, and G. Salamo, "Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons," Opt. Lett. 21, 931-933 (1996).
[CrossRef] [PubMed]

E. DelRe, A. Ciattoni, and A. J. Agranat, "Anisotropic charge displacement supporting isolated photorefractive optical needles," Opt. Lett. 26, 908-910 (2001).
[CrossRef]

E. DelRe, B. Crosignani, P. Di Porto, E. Palange, and A. J. Agranat, "Electro-optic beam manipulation through photorefractive needles," Opt. Lett. 27, 2188-2190 (2002).
[CrossRef]

M. Asaro, M. Sheldon, Z. G. Chen, O. Ostroverkhova, and W. E. Moerner, "Soliton-induced waveguides in an organic photorefractive glass," Opt. Lett. 30, 519-521 (2005).
[CrossRef] [PubMed]

Opt.Lett. (1)

E. DelRe, M. Tamburrini, and A. J. Agranat, "Soliton electro-optic effects in paraelectrics," Opt.Lett. 25, 963-965 (2000).
[CrossRef]

Phys. Rev. A (1)

A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric-field," Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

C. Dari-Salisburgo, E. DelRe, and E. Palange, "Molding and stretched evolution of optical solitons in cumulative nonlinearities," Phys. Rev. Lett. 91, 263903 (2003).
[CrossRef]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Other (1)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Left: Experimental setup. Right: Propagation dynamics in the readout of an electro-activated soliton pattern. (a) input and (b) output intensity distribution before charge separation and (c)–(l) output for various conditions of θin , θout , and bias V.

Fig. 2.
Fig. 2.

Observed fraction of output power of the separated polarization components along x (triangles) and y (circles) and input for various values of θin and V = -Vsol . The dotted line is the case in which the relative power distribution is preserved from input to output.

Fig. 3.
Fig. 3.

A two-soliton polarization component separator. (a) S 1 soliton output at V S 1 = Vsol after τw ; (b) Output before the S 2 writing phase at V = -Vsol , having shifted the beam laterally by 15 μm; (c) S 2 output at V S 2 = -Vsol after a second interval τw ; read-out phase at V = Vsol , launching light into the S 2 core with θin = π/4, (d) with θout = 0, (e) θout = π/2, and (f) no output polarizer. Crosses provide the reference to the two underlying soliton positions.

Fig. 4.
Fig. 4.

Numerically evaluated components of the refractive index tensor driving light propagation through the readout stage: single channel readout for V = Vsol (a,b and c), single channel readout for V = -Vsol (d,e and f), two channels readout for V = V S 1 = -V S 2 (g,h and i). Transverse x and y coordinate are expressed in microns.

Metrics