Abstract

We perform optimization of all-optical EDFA-based Sagnac – interferometer switch through an analytical model and numerical simulations by solving nonlinear Schrödinger equations. The effects of the performance of EDFA on the bit rate and the switching power are investigated for all-optical switch based on self-phase or cross-phase modulation. The simulated results show that ultra-low switching power (<1mW) all-optical switch for 40 Gb/s data can be realized by properly selecting the length of highly nonlinear photonic crystal fiber and adjusting the performance of EDFA.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, "Applications of nonlinear fiber optics," (Academic Press, New York, 2001), 319-360.
  2. T. Y. Yeow, K. L. E. Law, and A. Goldenberg, "MEMS optical switches," IEEE Commun. Mag. 39, 158-163 (2001).
    [CrossRef]
  3. M. H. Lee, Y. H. Min, J. J. Ju, J. Y. Do, S. K. Park, "Polymeric electrooptical 2×2 switch consisting of bifurcation optical active waveguides and a Mach-Zehnder interferometer," IEEE Journal of Selected Topics in Quantum Electronics. 7, 812-818(2001).
    [CrossRef]
  4. H. S. Pask, "All-fiber wavelength-tunable acousto-optic switch," Pro. OFC 2001. 3, WJ4_1- WJ4_3 (2001).
  5. R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low power thermooptic switch and its application to 8×8 optical matrix switch," IEEE/OSA J.Lightw. Technol. 20, 993-1000 (2002).
    [CrossRef]
  6. G. P. Agrawal, "Nonlinear fiber optics," (Academic Press, New York, 2001), 97-437.
  7. K. J. Blow, N. J. Doran, and B. K. Nayar, "Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer," Opt. Lett. 14, 754-756 (1989).
    [CrossRef] [PubMed]
  8. Chunfei Li and B. Alireza, "Finesse-enhanced ring resonator coupled Mach-Zehnder interferometer all-optical switches," Chin. Phys. Lett. 21, 90-93 (2004).
    [CrossRef]
  9. G. Berrettini, G. Meloni, A. Bogoni, L. Potì, "All-optical 2×2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photonics Technology Letters. 18, 2439-2441 (2006).
    [CrossRef]
  10. D. J. Richardson, R. I. Laming, D. N. Payne, "Very low threshold Sagnac switch incorporating an erbium dopedfibre amplifier," Electron. Lett. 26, 1779-1781 (1990).
    [CrossRef]
  11. J. G. Liu, G. Y. Kai, L. F. Xue,  et al., "An all-optical switch based on highly nonlinear photonic crystal fiber Sagnac loop mirror," Acta. Phys. Sin. 56, 941-945 (2007).

2007 (1)

J. G. Liu, G. Y. Kai, L. F. Xue,  et al., "An all-optical switch based on highly nonlinear photonic crystal fiber Sagnac loop mirror," Acta. Phys. Sin. 56, 941-945 (2007).

2006 (1)

G. Berrettini, G. Meloni, A. Bogoni, L. Potì, "All-optical 2×2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photonics Technology Letters. 18, 2439-2441 (2006).
[CrossRef]

2004 (1)

Chunfei Li and B. Alireza, "Finesse-enhanced ring resonator coupled Mach-Zehnder interferometer all-optical switches," Chin. Phys. Lett. 21, 90-93 (2004).
[CrossRef]

2002 (1)

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low power thermooptic switch and its application to 8×8 optical matrix switch," IEEE/OSA J.Lightw. Technol. 20, 993-1000 (2002).
[CrossRef]

2001 (2)

T. Y. Yeow, K. L. E. Law, and A. Goldenberg, "MEMS optical switches," IEEE Commun. Mag. 39, 158-163 (2001).
[CrossRef]

M. H. Lee, Y. H. Min, J. J. Ju, J. Y. Do, S. K. Park, "Polymeric electrooptical 2×2 switch consisting of bifurcation optical active waveguides and a Mach-Zehnder interferometer," IEEE Journal of Selected Topics in Quantum Electronics. 7, 812-818(2001).
[CrossRef]

1990 (1)

D. J. Richardson, R. I. Laming, D. N. Payne, "Very low threshold Sagnac switch incorporating an erbium dopedfibre amplifier," Electron. Lett. 26, 1779-1781 (1990).
[CrossRef]

1989 (1)

Berrettini, G.

G. Berrettini, G. Meloni, A. Bogoni, L. Potì, "All-optical 2×2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photonics Technology Letters. 18, 2439-2441 (2006).
[CrossRef]

Blow, K. J.

Bogoni, A.

G. Berrettini, G. Meloni, A. Bogoni, L. Potì, "All-optical 2×2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photonics Technology Letters. 18, 2439-2441 (2006).
[CrossRef]

Chunfei Li,

Chunfei Li and B. Alireza, "Finesse-enhanced ring resonator coupled Mach-Zehnder interferometer all-optical switches," Chin. Phys. Lett. 21, 90-93 (2004).
[CrossRef]

Do, J. Y.

M. H. Lee, Y. H. Min, J. J. Ju, J. Y. Do, S. K. Park, "Polymeric electrooptical 2×2 switch consisting of bifurcation optical active waveguides and a Mach-Zehnder interferometer," IEEE Journal of Selected Topics in Quantum Electronics. 7, 812-818(2001).
[CrossRef]

Doran, N. J.

Goh, T.

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low power thermooptic switch and its application to 8×8 optical matrix switch," IEEE/OSA J.Lightw. Technol. 20, 993-1000 (2002).
[CrossRef]

Goldenberg, A.

T. Y. Yeow, K. L. E. Law, and A. Goldenberg, "MEMS optical switches," IEEE Commun. Mag. 39, 158-163 (2001).
[CrossRef]

Himeno, A.

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low power thermooptic switch and its application to 8×8 optical matrix switch," IEEE/OSA J.Lightw. Technol. 20, 993-1000 (2002).
[CrossRef]

Ju, J. J.

M. H. Lee, Y. H. Min, J. J. Ju, J. Y. Do, S. K. Park, "Polymeric electrooptical 2×2 switch consisting of bifurcation optical active waveguides and a Mach-Zehnder interferometer," IEEE Journal of Selected Topics in Quantum Electronics. 7, 812-818(2001).
[CrossRef]

Kai, G. Y.

J. G. Liu, G. Y. Kai, L. F. Xue,  et al., "An all-optical switch based on highly nonlinear photonic crystal fiber Sagnac loop mirror," Acta. Phys. Sin. 56, 941-945 (2007).

Kasahara, R.

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low power thermooptic switch and its application to 8×8 optical matrix switch," IEEE/OSA J.Lightw. Technol. 20, 993-1000 (2002).
[CrossRef]

Laming, R. I.

D. J. Richardson, R. I. Laming, D. N. Payne, "Very low threshold Sagnac switch incorporating an erbium dopedfibre amplifier," Electron. Lett. 26, 1779-1781 (1990).
[CrossRef]

Law, K. L. E.

T. Y. Yeow, K. L. E. Law, and A. Goldenberg, "MEMS optical switches," IEEE Commun. Mag. 39, 158-163 (2001).
[CrossRef]

Lee, M. H.

M. H. Lee, Y. H. Min, J. J. Ju, J. Y. Do, S. K. Park, "Polymeric electrooptical 2×2 switch consisting of bifurcation optical active waveguides and a Mach-Zehnder interferometer," IEEE Journal of Selected Topics in Quantum Electronics. 7, 812-818(2001).
[CrossRef]

Liu, J. G.

J. G. Liu, G. Y. Kai, L. F. Xue,  et al., "An all-optical switch based on highly nonlinear photonic crystal fiber Sagnac loop mirror," Acta. Phys. Sin. 56, 941-945 (2007).

Matsui, S.

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low power thermooptic switch and its application to 8×8 optical matrix switch," IEEE/OSA J.Lightw. Technol. 20, 993-1000 (2002).
[CrossRef]

Meloni, G.

G. Berrettini, G. Meloni, A. Bogoni, L. Potì, "All-optical 2×2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photonics Technology Letters. 18, 2439-2441 (2006).
[CrossRef]

Min, Y. H.

M. H. Lee, Y. H. Min, J. J. Ju, J. Y. Do, S. K. Park, "Polymeric electrooptical 2×2 switch consisting of bifurcation optical active waveguides and a Mach-Zehnder interferometer," IEEE Journal of Selected Topics in Quantum Electronics. 7, 812-818(2001).
[CrossRef]

Nayar, B. K.

Park, S. K.

M. H. Lee, Y. H. Min, J. J. Ju, J. Y. Do, S. K. Park, "Polymeric electrooptical 2×2 switch consisting of bifurcation optical active waveguides and a Mach-Zehnder interferometer," IEEE Journal of Selected Topics in Quantum Electronics. 7, 812-818(2001).
[CrossRef]

Payne, D. N.

D. J. Richardson, R. I. Laming, D. N. Payne, "Very low threshold Sagnac switch incorporating an erbium dopedfibre amplifier," Electron. Lett. 26, 1779-1781 (1990).
[CrossRef]

Potì, L.

G. Berrettini, G. Meloni, A. Bogoni, L. Potì, "All-optical 2×2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photonics Technology Letters. 18, 2439-2441 (2006).
[CrossRef]

Richardson, D. J.

D. J. Richardson, R. I. Laming, D. N. Payne, "Very low threshold Sagnac switch incorporating an erbium dopedfibre amplifier," Electron. Lett. 26, 1779-1781 (1990).
[CrossRef]

Sugita, A.

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low power thermooptic switch and its application to 8×8 optical matrix switch," IEEE/OSA J.Lightw. Technol. 20, 993-1000 (2002).
[CrossRef]

Xue, L. F.

J. G. Liu, G. Y. Kai, L. F. Xue,  et al., "An all-optical switch based on highly nonlinear photonic crystal fiber Sagnac loop mirror," Acta. Phys. Sin. 56, 941-945 (2007).

Yanagisawa, M.

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low power thermooptic switch and its application to 8×8 optical matrix switch," IEEE/OSA J.Lightw. Technol. 20, 993-1000 (2002).
[CrossRef]

Yasu, M.

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low power thermooptic switch and its application to 8×8 optical matrix switch," IEEE/OSA J.Lightw. Technol. 20, 993-1000 (2002).
[CrossRef]

Yeow, T. Y.

T. Y. Yeow, K. L. E. Law, and A. Goldenberg, "MEMS optical switches," IEEE Commun. Mag. 39, 158-163 (2001).
[CrossRef]

Chin. Phys. Lett. (1)

Chunfei Li and B. Alireza, "Finesse-enhanced ring resonator coupled Mach-Zehnder interferometer all-optical switches," Chin. Phys. Lett. 21, 90-93 (2004).
[CrossRef]

Electron. Lett. (1)

D. J. Richardson, R. I. Laming, D. N. Payne, "Very low threshold Sagnac switch incorporating an erbium dopedfibre amplifier," Electron. Lett. 26, 1779-1781 (1990).
[CrossRef]

IEEE Commun. Mag. (1)

T. Y. Yeow, K. L. E. Law, and A. Goldenberg, "MEMS optical switches," IEEE Commun. Mag. 39, 158-163 (2001).
[CrossRef]

IEEE Journal of Selected Topics in Quantum Electronics. (1)

M. H. Lee, Y. H. Min, J. J. Ju, J. Y. Do, S. K. Park, "Polymeric electrooptical 2×2 switch consisting of bifurcation optical active waveguides and a Mach-Zehnder interferometer," IEEE Journal of Selected Topics in Quantum Electronics. 7, 812-818(2001).
[CrossRef]

IEEE Photonics Technology Letters. (1)

G. Berrettini, G. Meloni, A. Bogoni, L. Potì, "All-optical 2×2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photonics Technology Letters. 18, 2439-2441 (2006).
[CrossRef]

Lightw. Technol. (1)

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, "New structure of silica-based planar lightwave circuits for low power thermooptic switch and its application to 8×8 optical matrix switch," IEEE/OSA J.Lightw. Technol. 20, 993-1000 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Sin. (1)

J. G. Liu, G. Y. Kai, L. F. Xue,  et al., "An all-optical switch based on highly nonlinear photonic crystal fiber Sagnac loop mirror," Acta. Phys. Sin. 56, 941-945 (2007).

Other (3)

G. P. Agrawal, "Nonlinear fiber optics," (Academic Press, New York, 2001), 97-437.

H. S. Pask, "All-fiber wavelength-tunable acousto-optic switch," Pro. OFC 2001. 3, WJ4_1- WJ4_3 (2001).

G. P. Agrawal, "Applications of nonlinear fiber optics," (Academic Press, New York, 2001), 319-360.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The schematic of all-optical Sagnac-interferometer switches based on (a) SPM and (b) XPM by including an EDFA. SMF: single mode fiber, HNPCF: highly nonlinear photonic crystal fiber.

Fig. 2.
Fig. 2.

(a) The switching power and the required gain for switching of all-optical Sagnac-interferometer switch based on SPM, and (b) its corresponding critical ratio as a function of the effective fiber length of HNPCF for EDFA (Ps = 35 mW) with different small signal gain values (G0=20, 30, 40, and 50 dB, respectively) and 40 Gb/s data; (c) The switching power and required gain for switching of all-optical Sagnac-interferometer switch based on SPM, and (d) its corresponding critical ratio as a function of the effective fiber length of HNPCF for EDFA (Ps = 35 mW) with different small signal gain values (G0=20, 30, 40, and 50 dB, respectively) and 10 Gb/s data

Fig. 3.
Fig. 3.

(a) The switching power and the required gain for switching of all-optical Sagnac-interferometer switch based on SPM, and (b) its corresponding critical ratio as a function of the effective fiber length of HNPCF for EDFA (Ps = 100 mW) with different small signal gain values (G0=20, 30, 40, and 50 dB, respectively) and 40 Gb/s data; (c) The switching power and required gain for switching of all-optical Sagnac-interferometer switch based on SPM, and (d) its corresponding critical ratio as a function of the effective fiber length of HNPCF for EDFA (Ps = 100 mW) with different small signal gain values (G0=20, 30, 40, and 50 dB, respectively) and 10 Gb/s data

Fig. 4.
Fig. 4.

(a) The switching power and the required gain for switching of all-optical Sagnac-interferometer switch based on XPM, and (b) its corresponding critical ratio as a function of the effective fiber length of HNPCF for EDFA (Ps = 100 mW) with different small signal gain values (G0 = 20, 30, 40, and 50 dB, respectively) and 40 Gb/s data; (c) The switching power and required gain for switching of all-optical Sagnac-interferometer switch based on XPM, and (d) its corresponding critical ratio as a function of the effective fiber length of HNPCF for EDFA (Ps = 100 mW) with different small signal gain values (G0 = 20, 30, 40, and 50 dB, respectively) and 10 Gb/s data

Fig. 5.
Fig. 5.

(a) The transmission ratio of the nonlinear Sagnac loop mirror against the input signal power for all-optical Saganac-interferometer switch based on SPM composed of a EDFA with G0 = 30 dB and Ps = 100 mW, a 300 m long HNPCF for 40 Gb/s data, (b) the pulse evolution of the input signal propagating clockwisely inside the fiber loop when the device is switched on, (c) the corresponding phase shift evolution of the input pulse inside the fiber loop, (d) the corresponding spectral evolution of the input signal inside the fiber loop.

Fig. 6.
Fig. 6.

(a) The transmission ratio of the nonlinear Sagnac loop mirror against the input signal power for all-optical Saganac-interferometer switch based on XPM composed of a EDFA with G0 = 30 dB and Ps = 100 mW, a 150 m long HNPCF for 40 Gb/s data, (b) the pulse evolution of the input signal propagating clockwisely inside the fiber loop when the device is switched on, (c) the corresponding phase shift evolution of the input pulse inside the fiber loop, (d) the corresponding spectral evolution of the input signal inside the fiber loop.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

A 3 z + α 2 A 3 + i 2 β 2 2 A 3 T 2 = i γ A 3 2 A 3
A 3 ( L , t ) = A 3 ( 0 , t ) exp ( i ϕ 0 + i γ A 3 2 L eff )
A 4 ( L , t ) = G A 4 ( 0 , t ) exp ( i ϕ 0 + i γ A 4 2 L eff )
[ A t A r ] = [ 1 2 i 1 2 i 1 2 1 2 ] [ A 3 ( L , t ) A 4 ( L , t ) ]
T SPM = G 1 cos ( γ ( 1 G ) A 0 2 L eff 2 ) 2
P SPM = 2 π ( G 1 ) γ L eff
G = G 0 exp [ ( 1 G ) P i P s ]
G SPM = { G 0 exp ( 2 π 5 γ L eff P s ) , for _ 40 Gb s _ data G 0 exp ( 2 π 20 γ L eff P s ) , for _ 10 Gb s _ data
P SPM _ F = { 2 π [ ( G 0 exp ( 2 5 γ L eff P s ) 1 ) γ L eff ] , for _ 40 Gb s _ data 2 π [ ( G 0 exp ( 2 π 20 γ L eff P s ) 1 ) γ L eff , for _ 10 Gb s _ data
{ P SPM _ F G SPM 5 P s 1 , for _ 40 Gb s _ data P SPM _ F G SPM 20 P s 1 , for _ 10 Gb s _ data
T XPM = G [ 1 cos ( ( 1 G ) ( A 0 2 + 2 A p 0 2 ) ( γ S L S + γ P L P ) 2 ) ] 2
P XPM = π ( G 1 ) ( γ S L S + γ P L P )
G XPM = { G 0 exp ( π 5 ( γ S L S + γ P L P ) P s ) , for _ 40 Gb s _ data G 0 exp ( 2 π 20 ( γ S L S + γ P L P ) P s ) , for _ 10 Gb s _ data
P XPM _ F = { π [ ( G 0 exp ( π 5 ( γ S L S + γ P L P ) P s ) 1 ) ( γ S L S + γ P L P ) ] , for _ 40 Gb s _ data π [ ( G 0 exp ( π 20 ( γ S L S + γ P L P ) P s ) 1 ) ( γ S L S + γ P L P ) ] ] , for _ 10 Gb s _ data
{ P XPM _ F G XPM 5 P s 1 , for _ 40 Gb s _ data P XPM _ F G XPM 20 P s 1 , for _ 10 Gb s _ data

Metrics