Abstract

It is well known that refraction of light at interfaces leads to a beam displacement for oblique incidence of light onto a slab of material. In ray optics and for homogeneous isotropic materials, the sign of this beam displacement is strictly identical to the sign of the refractive index. Our numerical calculations reveal negative beam displacements from state-of-the-art double-fishnet-type photonic metamaterials. This holds true for the “main” polarization corresponding to a negative phase velocity for normal incidence as well as for the “secondary” polarization with positive phase velocity. To understand and interpret these results, we also present exact analytical calculations for thin metal films showing that, in wave optics, the sign of the beam displacement (i.e., the sign of refraction) is generally not identical to the sign of the refractive index.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Negative refraction in indefinite media

David R. Smith, Pavel Kolinko, and David Schurig
J. Opt. Soc. Am. B 21(5) 1032-1043 (2004)

Refraction and rightness in photonic crystals

R. Gajić, R. Meisels, F. Kuchar, and K. Hingerl
Opt. Express 13(21) 8596-8605 (2005)

Group front evolution of Gaussian beam refracted from a right- to left-handed medium

Jacek Pniewski and Tomasz Szoplik
Opt. Express 14(18) 8232-8239 (2006)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneuously negative values of ε and μ,” Sov. Phys. Uspekhi 10, 509–514 (1968).
    [Crossref]
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2006).
    [Crossref]
  3. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315, 47–49 (2007).
    [Crossref] [PubMed]
  4. K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostruc-tures for photonics,” Phys. Rep. 444, 101–202 (2007).
    [Crossref]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verfication of a Negative Index of Refraction,” Science 292, 77–79 (2001).
    [Crossref] [PubMed]
  6. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic meta-material,” Opt. Lett.  32, 551–553 (2007).
    [Crossref] [PubMed]
  7. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
    [Crossref] [PubMed]
  8. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800–1802 (2006).
    [Crossref] [PubMed]
  9. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
    [Crossref]
  10. X. L. Chen, M. He, Y. Du, W. Y. Wang, and D. F. Zhang, “Negative refraction: An intrinsic property of uniaxial crystals,” Phys. Rev. B 72, 113111 (2005).
    [Crossref]
  11. E. Shamonina and L. Solymar, “Properties of magnetically coupled metamaterial elements,” J. Magn. Magn. Mater. 300, 38–43 (2006).
    [Crossref]
  12. G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
    [Crossref]
  13. F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Physik 1, 333–346 (1947).
    [Crossref]
  14. F. Goos and H. Hänchen “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Physik 5, 251–252 (1949).
    [Crossref]
  15. H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hänchen effect,” Phys. Rev. E 62, 7330–7339 (2000).
    [Crossref]
  16. S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
    [Crossref] [PubMed]
  17. S. Burger, R. Klose, A. Schädle, F. Schmidt, and L. Zschiedrich, “FEM modelling of 3D photonic crystals and photonic crystal waveguides,” Proc. SPIE Vol. 5728, 164–173 (2005).
    [Crossref]
  18. L. Zschiedrich, R. Klose, A. Schädle, and F. Schmidt, “A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D,” J. Comput Appl. Math., 188, 12–32 (2006).
    [Crossref]
  19. L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, “Advanced Finite Element Method for Nano-Resonators,” Proc. SPIE Vol. 6115, 164–174 (2006).
  20. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  21. E. Hecht, Optics (Addison Wesley,2001).
  22. J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref] [PubMed]
  23. M. Wegener, G. Dolling, and S. Linden, “Backward waves moving forward,” Nature Mater. 6, 475–476 (2007).
    [Crossref]

2007 (5)

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostruc-tures for photonics,” Phys. Rep. 444, 101–202 (2007).
[Crossref]

G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic meta-material,” Opt. Lett.  32, 551–553 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

M. Wegener, G. Dolling, and S. Linden, “Backward waves moving forward,” Nature Mater. 6, 475–476 (2007).
[Crossref]

2006 (7)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800–1802 (2006).
[Crossref] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2006).
[Crossref]

E. Shamonina and L. Solymar, “Properties of magnetically coupled metamaterial elements,” J. Magn. Magn. Mater. 300, 38–43 (2006).
[Crossref]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
[Crossref]

L. Zschiedrich, R. Klose, A. Schädle, and F. Schmidt, “A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D,” J. Comput Appl. Math., 188, 12–32 (2006).
[Crossref]

L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, “Advanced Finite Element Method for Nano-Resonators,” Proc. SPIE Vol. 6115, 164–174 (2006).

2005 (3)

S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
[Crossref] [PubMed]

S. Burger, R. Klose, A. Schädle, F. Schmidt, and L. Zschiedrich, “FEM modelling of 3D photonic crystals and photonic crystal waveguides,” Proc. SPIE Vol. 5728, 164–173 (2005).
[Crossref]

X. L. Chen, M. He, Y. Du, W. Y. Wang, and D. F. Zhang, “Negative refraction: An intrinsic property of uniaxial crystals,” Phys. Rev. B 72, 113111 (2005).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verfication of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

2000 (2)

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hänchen effect,” Phys. Rev. E 62, 7330–7339 (2000).
[Crossref]

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneuously negative values of ε and μ,” Sov. Phys. Uspekhi 10, 509–514 (1968).
[Crossref]

1949 (1)

F. Goos and H. Hänchen “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Physik 5, 251–252 (1949).
[Crossref]

1947 (1)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Physik 1, 333–346 (1947).
[Crossref]

Brueck, S. R.

Burger, S.

L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, “Advanced Finite Element Method for Nano-Resonators,” Proc. SPIE Vol. 6115, 164–174 (2006).

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
[Crossref]

S. Burger, R. Klose, A. Schädle, F. Schmidt, and L. Zschiedrich, “FEM modelling of 3D photonic crystals and photonic crystal waveguides,” Proc. SPIE Vol. 5728, 164–173 (2005).
[Crossref]

Busch, K.

K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostruc-tures for photonics,” Phys. Rep. 444, 101–202 (2007).
[Crossref]

Chen, X. L.

X. L. Chen, M. He, Y. Du, W. Y. Wang, and D. F. Zhang, “Negative refraction: An intrinsic property of uniaxial crystals,” Phys. Rev. B 72, 113111 (2005).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Dolling, G.

M. Wegener, G. Dolling, and S. Linden, “Backward waves moving forward,” Nature Mater. 6, 475–476 (2007).
[Crossref]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic meta-material,” Opt. Lett.  32, 551–553 (2007).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800–1802 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
[Crossref]

Du, Y.

X. L. Chen, M. He, Y. Du, W. Y. Wang, and D. F. Zhang, “Negative refraction: An intrinsic property of uniaxial crystals,” Phys. Rev. B 72, 113111 (2005).
[Crossref]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800–1802 (2006).
[Crossref] [PubMed]

Fan, W.

Goos, F.

F. Goos and H. Hänchen “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Physik 5, 251–252 (1949).
[Crossref]

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Physik 1, 333–346 (1947).
[Crossref]

Hänchen, H.

F. Goos and H. Hänchen “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Physik 5, 251–252 (1949).
[Crossref]

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Physik 1, 333–346 (1947).
[Crossref]

He, M.

X. L. Chen, M. He, Y. Du, W. Y. Wang, and D. F. Zhang, “Negative refraction: An intrinsic property of uniaxial crystals,” Phys. Rev. B 72, 113111 (2005).
[Crossref]

Hecht, E.

E. Hecht, Optics (Addison Wesley,2001).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kettner, B.

L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, “Advanced Finite Element Method for Nano-Resonators,” Proc. SPIE Vol. 6115, 164–174 (2006).

Klose, R.

L. Zschiedrich, R. Klose, A. Schädle, and F. Schmidt, “A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D,” J. Comput Appl. Math., 188, 12–32 (2006).
[Crossref]

S. Burger, R. Klose, A. Schädle, F. Schmidt, and L. Zschiedrich, “FEM modelling of 3D photonic crystals and photonic crystal waveguides,” Proc. SPIE Vol. 5728, 164–173 (2005).
[Crossref]

Kwok, C. W.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hänchen effect,” Phys. Rev. E 62, 7330–7339 (2000).
[Crossref]

Lai, H. M.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hänchen effect,” Phys. Rev. E 62, 7330–7339 (2000).
[Crossref]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostruc-tures for photonics,” Phys. Rep. 444, 101–202 (2007).
[Crossref]

M. Wegener, G. Dolling, and S. Linden, “Backward waves moving forward,” Nature Mater. 6, 475–476 (2007).
[Crossref]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic meta-material,” Opt. Lett.  32, 551–553 (2007).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800–1802 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
[Crossref]

Loo, Y. W.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hänchen effect,” Phys. Rev. E 62, 7330–7339 (2000).
[Crossref]

Malloy, K. J.

Mingaleev, S.

K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostruc-tures for photonics,” Phys. Rep. 444, 101–202 (2007).
[Crossref]

Osgood, R. M.

Panoiu, N. C.

Pendry, J. B.

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Schädle, A.

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
[Crossref]

L. Zschiedrich, R. Klose, A. Schädle, and F. Schmidt, “A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D,” J. Comput Appl. Math., 188, 12–32 (2006).
[Crossref]

S. Burger, R. Klose, A. Schädle, F. Schmidt, and L. Zschiedrich, “FEM modelling of 3D photonic crystals and photonic crystal waveguides,” Proc. SPIE Vol. 5728, 164–173 (2005).
[Crossref]

Schmidt, F.

L. Zschiedrich, R. Klose, A. Schädle, and F. Schmidt, “A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D,” J. Comput Appl. Math., 188, 12–32 (2006).
[Crossref]

L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, “Advanced Finite Element Method for Nano-Resonators,” Proc. SPIE Vol. 6115, 164–174 (2006).

S. Burger, R. Klose, A. Schädle, F. Schmidt, and L. Zschiedrich, “FEM modelling of 3D photonic crystals and photonic crystal waveguides,” Proc. SPIE Vol. 5728, 164–173 (2005).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verfication of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2006).
[Crossref]

Shamonina, E.

E. Shamonina and L. Solymar, “Properties of magnetically coupled metamaterial elements,” J. Magn. Magn. Mater. 300, 38–43 (2006).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verfication of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verfication of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Solymar, L.

E. Shamonina and L. Solymar, “Properties of magnetically coupled metamaterial elements,” J. Magn. Magn. Mater. 300, 38–43 (2006).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800–1802 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

Tkeshelashvili, L.

K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostruc-tures for photonics,” Phys. Rep. 444, 101–202 (2007).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneuously negative values of ε and μ,” Sov. Phys. Uspekhi 10, 509–514 (1968).
[Crossref]

von Freymann, G.

K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostruc-tures for photonics,” Phys. Rep. 444, 101–202 (2007).
[Crossref]

Wang, W. Y.

X. L. Chen, M. He, Y. Du, W. Y. Wang, and D. F. Zhang, “Negative refraction: An intrinsic property of uniaxial crystals,” Phys. Rev. B 72, 113111 (2005).
[Crossref]

Wegener, M.

K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostruc-tures for photonics,” Phys. Rep. 444, 101–202 (2007).
[Crossref]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

M. Wegener, G. Dolling, and S. Linden, “Backward waves moving forward,” Nature Mater. 6, 475–476 (2007).
[Crossref]

G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic meta-material,” Opt. Lett.  32, 551–553 (2007).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800–1802 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
[Crossref]

Xu, B. Y.

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hänchen effect,” Phys. Rev. E 62, 7330–7339 (2000).
[Crossref]

Zhang, D. F.

X. L. Chen, M. He, Y. Du, W. Y. Wang, and D. F. Zhang, “Negative refraction: An intrinsic property of uniaxial crystals,” Phys. Rev. B 72, 113111 (2005).
[Crossref]

Zhang, S.

Zschiedrich, L.

L. Zschiedrich, R. Klose, A. Schädle, and F. Schmidt, “A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D,” J. Comput Appl. Math., 188, 12–32 (2006).
[Crossref]

L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, “Advanced Finite Element Method for Nano-Resonators,” Proc. SPIE Vol. 6115, 164–174 (2006).

S. Burger, R. Klose, A. Schädle, F. Schmidt, and L. Zschiedrich, “FEM modelling of 3D photonic crystals and photonic crystal waveguides,” Proc. SPIE Vol. 5728, 164–173 (2005).
[Crossref]

Ann. Physik (2)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Physik 1, 333–346 (1947).
[Crossref]

F. Goos and H. Hänchen “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Physik 5, 251–252 (1949).
[Crossref]

Appl. Phys. Lett. (1)

G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006).
[Crossref]

J. Comput Appl. Math., (1)

L. Zschiedrich, R. Klose, A. Schädle, and F. Schmidt, “A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D,” J. Comput Appl. Math., 188, 12–32 (2006).
[Crossref]

J. Magn. Magn. Mater. (1)

E. Shamonina and L. Solymar, “Properties of magnetically coupled metamaterial elements,” J. Magn. Magn. Mater. 300, 38–43 (2006).
[Crossref]

Nature Mater. (1)

M. Wegener, G. Dolling, and S. Linden, “Backward waves moving forward,” Nature Mater. 6, 475–476 (2007).
[Crossref]

Nature Photon. (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photon. 1, 41–48 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rep. (1)

K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostruc-tures for photonics,” Phys. Rep. 444, 101–202 (2007).
[Crossref]

Phys. Rev. B (2)

X. L. Chen, M. He, Y. Du, W. Y. Wang, and D. F. Zhang, “Negative refraction: An intrinsic property of uniaxial crystals,” Phys. Rev. B 72, 113111 (2005).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. E (1)

H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, “Energy-flux pattern in the Goos-Hänchen effect,” Phys. Rev. E 62, 7330–7339 (2000).
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Proc. SPIE Vol. (2)

S. Burger, R. Klose, A. Schädle, F. Schmidt, and L. Zschiedrich, “FEM modelling of 3D photonic crystals and photonic crystal waveguides,” Proc. SPIE Vol. 5728, 164–173 (2005).
[Crossref]

L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, “Advanced Finite Element Method for Nano-Resonators,” Proc. SPIE Vol. 6115, 164–174 (2006).

Science (3)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verfication of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative Refractive Index at Optical Wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

Sov. Phys. Uspekhi (1)

V. G. Veselago, “The electrodynamics of substances with simultaneuously negative values of ε and μ,” Sov. Phys. Uspekhi 10, 509–514 (1968).
[Crossref]

Other (1)

E. Hecht, Optics (Addison Wesley,2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Light impinges from vacuum onto a slab (gray area) of an isotropic and homogeneous material of thickness d under oblique incidence with an angle α as indicated. In ray optics, a positive real part of the refractive index Re(n) > 0 leads to a positive beam displacement Δx > 0 (left panel), whereas the displacement is negative (right panel) for a negative refractive index Re(n) < 0. The shift of the transmitted beam, s x , is also indicated.

Fig. 2.
Fig. 2.

Illustration of one unit cell of a single layer of the well-known so-called double-fishnet design of negative-index photonic metamaterials. The parameters are indicated. The yellow regions are the metal (Au), the blue region is the dielectric spacer (MgF2). The structure is located on a glass substrate (not shown).

Fig. 3.
Fig. 3.

Calculated response for the sample structure shown in Fig.2 and for the geometry illustrated in Fig. 1. Results are shown for the “main“ polarization (solid) and for the “secondary” polarization (dashed). The configurations are illustrated by the inset. The arrows indicate the polarization, i.e., the orientation of the electric-field vector of the incident light. (a) Intensity transmittance spectra for the angles of incidence as indicated, (b) retrieved values of the complex quantity n for normal incidence, (c) calculated beam displacements Δx for the complete microscopic theory, and (d) Δx obtained from the parameters obtained from the normal-incidence retrieval. The symbols in (a) and (c) are calculated, the curves are guides to the eye.

Fig. 4.
Fig. 4.

(a) Beam displacements versus angle of incidence a obtained from exact analytical calculations (curves) and complete numerical calculations (symbols) for p- (solid) and s-polarized (dashed) light, respectively, for oblique incidence onto a free-standing 25-nm thin silver film. The two different incident wavelengths are 532 nm (green curves) and 650 nm (red curves). (b) Corresponding (intensity) transmittance spectra. Note the excellent agreement between analytical and numerical results.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E t = Z t Z i 2 γt γ i cos ( kd ) γ i γ t γ m i sin ( kd ) γ m i sin ( kd ) + γ t cos ( kd ) E i
E t = 2 γ i γ i cos ( kd ) γ i γ t γ m i sin ( kd ) γ m i sin ( kd ) + γ t cos ( kd ) E i .

Metrics