Abstract

We investigate the frequency offset in the frequency stabilization of a semiconductor laser based on a frequency-dithering technique. An analytical model is presented to describe the effects of the amplitude modulation and the phase delay between the amplitude and frequency modulation on the frequency stabilization. We also experimentally and analytically show that the frequency offset could be reduced by using an appropriate phase-sensitive detection.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Chung, J. Jeong, and L. S. Chung, "Aging-induced wavelength shifts in 1.5 ?m DFB lasers," IEEE Photon. Technol. Lett. 6, 792-795 (1994).
    [CrossRef]
  2. C. Svelto, E. Bava, S. Taccheo, and P. Laporta, "Absolute frequency stabilization of two diode-pumped Er-Yb:glass lasers to the acetylene P(15) line at 1534 nm," Appl. Phys. Lett. 73, 1778-1780 (1998).
    [CrossRef]
  3. V. Gerginov and C. E. Tanner, "Heterodyne frequency calibration of high resolution cesium spectra using diode lasers," Opt. Commun. 216, 391-399 (2003).
    [CrossRef]
  4. H. S. Moon, L. Lee, K. Kim, and J. B. Kim, "Laser frequency stabilization using electromagnetically induced transparency," Appl. Phys. Lett. 84, 3001-3003 (2004).
    [CrossRef]
  5. G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54 um Er-Yb laser against Doppler-free C2H2 lines," Opt. Commun. 209, 411-416 (2002).
    [CrossRef]
  6. Y. C. Chung and L. W. Stulz, "Synchronized etalon filters for standardizing WDM transmitter laser wavelengths," IEEE Photon. Technol. Lett. 5, 186-189 (1993).
    [CrossRef]
  7. K. Nakayama, M. Hyodo, R. Ohmukai, and M. Watanabe, "Multiple frequency stabilization of lasers using double saturation spectroscopy," Opt. Commun. 259, 242-250 (2006).
    [CrossRef]
  8. C. I. Sukenik, H. C. Busch, and M. Shiddiq, "Modulation-free laser frequency stabilization and detuning," Opt. Commun. 203, 133-137 (2002).
    [CrossRef]
  9. R. Guo, F. Hong, A. Onae, Z. Bi, and H. Matsumoto, "Frequency stabilization of a 1319-nm Nd:YAG laser by saturation spectroscopy of molecular iodine," Opt. Lett. 29, 1733-1735 (2004).
    [CrossRef] [PubMed]
  10. F. du Burck, O. Lopez, and A. El Basri, "Narrow-band correction of the residual amplitude modulation in FM spectroscopy," IEEE Trans. Instrum. Meas. 52, 288-291 (2003).
    [CrossRef]
  11. D. Welford and S. B. Alexander, "Magnitude and phase characteristics of frequency modulation in directly modulated GaAlAs semiconductor diode lasers," J. Lightwave Technol. 3, 1092-1099 (1985)
    [CrossRef]

2006 (1)

K. Nakayama, M. Hyodo, R. Ohmukai, and M. Watanabe, "Multiple frequency stabilization of lasers using double saturation spectroscopy," Opt. Commun. 259, 242-250 (2006).
[CrossRef]

2004 (2)

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, "Laser frequency stabilization using electromagnetically induced transparency," Appl. Phys. Lett. 84, 3001-3003 (2004).
[CrossRef]

R. Guo, F. Hong, A. Onae, Z. Bi, and H. Matsumoto, "Frequency stabilization of a 1319-nm Nd:YAG laser by saturation spectroscopy of molecular iodine," Opt. Lett. 29, 1733-1735 (2004).
[CrossRef] [PubMed]

2003 (2)

V. Gerginov and C. E. Tanner, "Heterodyne frequency calibration of high resolution cesium spectra using diode lasers," Opt. Commun. 216, 391-399 (2003).
[CrossRef]

F. du Burck, O. Lopez, and A. El Basri, "Narrow-band correction of the residual amplitude modulation in FM spectroscopy," IEEE Trans. Instrum. Meas. 52, 288-291 (2003).
[CrossRef]

2002 (2)

C. I. Sukenik, H. C. Busch, and M. Shiddiq, "Modulation-free laser frequency stabilization and detuning," Opt. Commun. 203, 133-137 (2002).
[CrossRef]

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54 um Er-Yb laser against Doppler-free C2H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

1998 (1)

C. Svelto, E. Bava, S. Taccheo, and P. Laporta, "Absolute frequency stabilization of two diode-pumped Er-Yb:glass lasers to the acetylene P(15) line at 1534 nm," Appl. Phys. Lett. 73, 1778-1780 (1998).
[CrossRef]

1994 (1)

Y. C. Chung, J. Jeong, and L. S. Chung, "Aging-induced wavelength shifts in 1.5 ?m DFB lasers," IEEE Photon. Technol. Lett. 6, 792-795 (1994).
[CrossRef]

1993 (1)

Y. C. Chung and L. W. Stulz, "Synchronized etalon filters for standardizing WDM transmitter laser wavelengths," IEEE Photon. Technol. Lett. 5, 186-189 (1993).
[CrossRef]

1985 (1)

D. Welford and S. B. Alexander, "Magnitude and phase characteristics of frequency modulation in directly modulated GaAlAs semiconductor diode lasers," J. Lightwave Technol. 3, 1092-1099 (1985)
[CrossRef]

Alexander, S. B.

D. Welford and S. B. Alexander, "Magnitude and phase characteristics of frequency modulation in directly modulated GaAlAs semiconductor diode lasers," J. Lightwave Technol. 3, 1092-1099 (1985)
[CrossRef]

Bava, E.

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54 um Er-Yb laser against Doppler-free C2H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

C. Svelto, E. Bava, S. Taccheo, and P. Laporta, "Absolute frequency stabilization of two diode-pumped Er-Yb:glass lasers to the acetylene P(15) line at 1534 nm," Appl. Phys. Lett. 73, 1778-1780 (1998).
[CrossRef]

Bi, Z.

Busch, H. C.

C. I. Sukenik, H. C. Busch, and M. Shiddiq, "Modulation-free laser frequency stabilization and detuning," Opt. Commun. 203, 133-137 (2002).
[CrossRef]

Chung, L. S.

Y. C. Chung, J. Jeong, and L. S. Chung, "Aging-induced wavelength shifts in 1.5 ?m DFB lasers," IEEE Photon. Technol. Lett. 6, 792-795 (1994).
[CrossRef]

Chung, Y. C.

Y. C. Chung, J. Jeong, and L. S. Chung, "Aging-induced wavelength shifts in 1.5 ?m DFB lasers," IEEE Photon. Technol. Lett. 6, 792-795 (1994).
[CrossRef]

Y. C. Chung and L. W. Stulz, "Synchronized etalon filters for standardizing WDM transmitter laser wavelengths," IEEE Photon. Technol. Lett. 5, 186-189 (1993).
[CrossRef]

du Burck, F.

F. du Burck, O. Lopez, and A. El Basri, "Narrow-band correction of the residual amplitude modulation in FM spectroscopy," IEEE Trans. Instrum. Meas. 52, 288-291 (2003).
[CrossRef]

El Basri, A.

F. du Burck, O. Lopez, and A. El Basri, "Narrow-band correction of the residual amplitude modulation in FM spectroscopy," IEEE Trans. Instrum. Meas. 52, 288-291 (2003).
[CrossRef]

Ferrario, F.

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54 um Er-Yb laser against Doppler-free C2H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

Galzerano, G.

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54 um Er-Yb laser against Doppler-free C2H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

Gerginov, V.

V. Gerginov and C. E. Tanner, "Heterodyne frequency calibration of high resolution cesium spectra using diode lasers," Opt. Commun. 216, 391-399 (2003).
[CrossRef]

Guo, R.

Hong, F.

Hyodo, M.

K. Nakayama, M. Hyodo, R. Ohmukai, and M. Watanabe, "Multiple frequency stabilization of lasers using double saturation spectroscopy," Opt. Commun. 259, 242-250 (2006).
[CrossRef]

Jeong, J.

Y. C. Chung, J. Jeong, and L. S. Chung, "Aging-induced wavelength shifts in 1.5 ?m DFB lasers," IEEE Photon. Technol. Lett. 6, 792-795 (1994).
[CrossRef]

Kim, J. B.

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, "Laser frequency stabilization using electromagnetically induced transparency," Appl. Phys. Lett. 84, 3001-3003 (2004).
[CrossRef]

Kim, K.

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, "Laser frequency stabilization using electromagnetically induced transparency," Appl. Phys. Lett. 84, 3001-3003 (2004).
[CrossRef]

Laporta, P.

C. Svelto, E. Bava, S. Taccheo, and P. Laporta, "Absolute frequency stabilization of two diode-pumped Er-Yb:glass lasers to the acetylene P(15) line at 1534 nm," Appl. Phys. Lett. 73, 1778-1780 (1998).
[CrossRef]

Lee, L.

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, "Laser frequency stabilization using electromagnetically induced transparency," Appl. Phys. Lett. 84, 3001-3003 (2004).
[CrossRef]

Lopez, O.

F. du Burck, O. Lopez, and A. El Basri, "Narrow-band correction of the residual amplitude modulation in FM spectroscopy," IEEE Trans. Instrum. Meas. 52, 288-291 (2003).
[CrossRef]

Marano, M.

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54 um Er-Yb laser against Doppler-free C2H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

Matsumoto, H.

Moon, H. S.

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, "Laser frequency stabilization using electromagnetically induced transparency," Appl. Phys. Lett. 84, 3001-3003 (2004).
[CrossRef]

Nakayama, K.

K. Nakayama, M. Hyodo, R. Ohmukai, and M. Watanabe, "Multiple frequency stabilization of lasers using double saturation spectroscopy," Opt. Commun. 259, 242-250 (2006).
[CrossRef]

Ohmukai, R.

K. Nakayama, M. Hyodo, R. Ohmukai, and M. Watanabe, "Multiple frequency stabilization of lasers using double saturation spectroscopy," Opt. Commun. 259, 242-250 (2006).
[CrossRef]

Onae, A.

R. Guo, F. Hong, A. Onae, Z. Bi, and H. Matsumoto, "Frequency stabilization of a 1319-nm Nd:YAG laser by saturation spectroscopy of molecular iodine," Opt. Lett. 29, 1733-1735 (2004).
[CrossRef] [PubMed]

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54 um Er-Yb laser against Doppler-free C2H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

Shiddiq, M.

C. I. Sukenik, H. C. Busch, and M. Shiddiq, "Modulation-free laser frequency stabilization and detuning," Opt. Commun. 203, 133-137 (2002).
[CrossRef]

Stulz, L. W.

Y. C. Chung and L. W. Stulz, "Synchronized etalon filters for standardizing WDM transmitter laser wavelengths," IEEE Photon. Technol. Lett. 5, 186-189 (1993).
[CrossRef]

Sukenik, C. I.

C. I. Sukenik, H. C. Busch, and M. Shiddiq, "Modulation-free laser frequency stabilization and detuning," Opt. Commun. 203, 133-137 (2002).
[CrossRef]

Svelto, C.

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54 um Er-Yb laser against Doppler-free C2H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

C. Svelto, E. Bava, S. Taccheo, and P. Laporta, "Absolute frequency stabilization of two diode-pumped Er-Yb:glass lasers to the acetylene P(15) line at 1534 nm," Appl. Phys. Lett. 73, 1778-1780 (1998).
[CrossRef]

Taccheo, S.

C. Svelto, E. Bava, S. Taccheo, and P. Laporta, "Absolute frequency stabilization of two diode-pumped Er-Yb:glass lasers to the acetylene P(15) line at 1534 nm," Appl. Phys. Lett. 73, 1778-1780 (1998).
[CrossRef]

Tanner, C. E.

V. Gerginov and C. E. Tanner, "Heterodyne frequency calibration of high resolution cesium spectra using diode lasers," Opt. Commun. 216, 391-399 (2003).
[CrossRef]

Watanabe, M.

K. Nakayama, M. Hyodo, R. Ohmukai, and M. Watanabe, "Multiple frequency stabilization of lasers using double saturation spectroscopy," Opt. Commun. 259, 242-250 (2006).
[CrossRef]

Welford, D.

D. Welford and S. B. Alexander, "Magnitude and phase characteristics of frequency modulation in directly modulated GaAlAs semiconductor diode lasers," J. Lightwave Technol. 3, 1092-1099 (1985)
[CrossRef]

Appl. Phys. Lett. (2)

C. Svelto, E. Bava, S. Taccheo, and P. Laporta, "Absolute frequency stabilization of two diode-pumped Er-Yb:glass lasers to the acetylene P(15) line at 1534 nm," Appl. Phys. Lett. 73, 1778-1780 (1998).
[CrossRef]

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, "Laser frequency stabilization using electromagnetically induced transparency," Appl. Phys. Lett. 84, 3001-3003 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. C. Chung and L. W. Stulz, "Synchronized etalon filters for standardizing WDM transmitter laser wavelengths," IEEE Photon. Technol. Lett. 5, 186-189 (1993).
[CrossRef]

Y. C. Chung, J. Jeong, and L. S. Chung, "Aging-induced wavelength shifts in 1.5 ?m DFB lasers," IEEE Photon. Technol. Lett. 6, 792-795 (1994).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

F. du Burck, O. Lopez, and A. El Basri, "Narrow-band correction of the residual amplitude modulation in FM spectroscopy," IEEE Trans. Instrum. Meas. 52, 288-291 (2003).
[CrossRef]

J. Lightwave Technol. (1)

D. Welford and S. B. Alexander, "Magnitude and phase characteristics of frequency modulation in directly modulated GaAlAs semiconductor diode lasers," J. Lightwave Technol. 3, 1092-1099 (1985)
[CrossRef]

Opt. Commun. (4)

K. Nakayama, M. Hyodo, R. Ohmukai, and M. Watanabe, "Multiple frequency stabilization of lasers using double saturation spectroscopy," Opt. Commun. 259, 242-250 (2006).
[CrossRef]

C. I. Sukenik, H. C. Busch, and M. Shiddiq, "Modulation-free laser frequency stabilization and detuning," Opt. Commun. 203, 133-137 (2002).
[CrossRef]

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54 um Er-Yb laser against Doppler-free C2H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

V. Gerginov and C. E. Tanner, "Heterodyne frequency calibration of high resolution cesium spectra using diode lasers," Opt. Commun. 216, 391-399 (2003).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup (LD: laser diode, PD: photodetector, OSC: oscillator).

Fig. 2.
Fig. 2.

The frequency-deviation rate of MQW-DFB laser measured while varying the dithering frequency.

Fig. 3.
Fig. 3.

Output of the lock-in amplifier measured while varying the lasing frequency of the DFB laser.

Fig. 4.
Fig. 4.

The frequency offset measured while varying the phase delay of the reference signal in the lock-in amplifier, in comparison with theoretically calculated lines.

Fig. 5.
Fig. 5.

The calculated frequency offset for different spectral linewidths of the frequency reference in high-resolution spectroscopy.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P ( t ) = P 0 + Δ P 0 sin ( ωt )
ν ( t ) = ν 0 Δ ν 0 sin ( ωt + ϕ )
O ( t ) { T ( ν 0 ) T ( ν 0 ) Δ ν 0 sin ( ωt + ϕ ) } { P 0 + Δ P 0 sin ( ωt ) }
T ( ν 0 ) = ( 1 R ) 2 ( 1 R ) 2 + 4 R sin 2 ( π ν 0 FSR )
S ( t ) T ( ν 0 ) Δ P 0 2 cos ( θ ) T′ ( ν 0 ) P 0 Δ v 0 2 cos ( ϕ θ )
ν offset = FSR 2 π { tan 1 ( A B ) sin 1 ( C A 2 + B 2 ) }
A = 2 R
B = 4 πR FSR P 0 Δ ν 0 Δ P 0 cos ( ϕ θ ) cos ( θ )
C = 1 + R 2

Metrics