A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]
[PubMed]
B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4610 (2006).
[Crossref]
F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]
S. Cloutier, C.-H. Hsu, P. Kosseyrev, and J. M. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[Crossref]
M. Potsidi and C. Londos, “The CiCs(Si-i) defect in silicon: An infrared spectroscopy study,” J. Appl. Phys. 100, 033523-033523-4 (2006).
[Crossref]
S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nature Mater. 4, 887–891, (2005).
[Crossref]
H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]
[PubMed]
A. Kenyon, “Erbium in silicon,” Semiconductor Science and Technology 20, R65–R84 (2005).
[Crossref]
O. Boyraz and B. Jalali, “Demonstration of a silicon raman laser,” Opt. Express 12, 5269–5272 (2005).
[Crossref]
L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High-speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref]
[PubMed]
M. Lipson, “Guiding, modulating, and emitting light on silicon challenges and opportunities,” J. Lightwave Technol. 23, 4222–4238 (2005).
[Crossref]
A. Dolgolenko, M. Varentsov, and G. Gaidar, “Energy level position of bistable CiCs defect in the B configuration in the forbidden band of n-Si,” Physica Status Solidi B 241, 2914–2922 (2004).
[Crossref]
Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
J. Liang, H. Chik, A. Yin, and J. Xu, “Two-dimensional lateral superlattices of nanostructures: Nonlithographic: Formation by anodic membrane template,” J. Appl. Phys. 91, 2544–2564 (2002).
[Crossref]
W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref]
[PubMed]
L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref]
[PubMed]
L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approach to the detection of near-infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
[Crossref]
E. Lavrov, L. Hoffmann, and B. B. Nielsen, “Local vibrational modes of the metastable dicarbon center (CsCi) in silicon,” Phys. Rev. B 60, 8081–8086, (1999).
[Crossref]
P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, “Characterization of optically active defects created by noble gas ion bombardment of silicon,” J. Appl. Phys. 83, 4075–4080 (1998).
[Crossref]
R. B. Capaz, A. Dal Pino, and J. D. Joannopoulos, “Theory of carbon-carbon pairs in silicon,” Phys. Rev. B 58, 9845–9850 (1998).
[Crossref]
J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]
L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, “Optimization of Si1-xGex/Si waveguide photodetectors operating at λ = 1.3 μm,” J. Lightwave Technol. 14, 787–797 (1996).
[Crossref]
G. Davies, K. Kun, and T. Reade, “Annealing kinetics of the dicarbon radiation-damage center in crystalline silicon,” Phys. Rev. B 44, 12146–12157 (1991).
[Crossref]
L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watking, “bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B 42, 5765–5782 (1990).
[Crossref]
G. Davies, “the optical properties of luminescence centres in silicon,” Phys. Rep. 176, 83–188 (1989).
[Crossref]
G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, “The temperature dependence of the 969 meV ‘G’ optical transition in silicon,” Semiconductor Science and Technology 4, 200–206 (1989).
[Crossref]
L. Canham, K. Barraclough, and D. Robbins, “1.3μm light-emitting diode from silicon electron irradiated at its damage threshold,” Appl. Phys. Lett. 51, 1509–1511 (1987).
[Crossref]
J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, “Photoluminescene detection of impurities introduced in silicon by dry etching processes,” Appl. Phys. A 41, 175–178 (1986).
[Crossref]
H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]
G Davies, E C Lightowlers, and M. do Carmo, “Carbon-related vibronic bands in electron-irradiated silicon,” J. Phys. C 16, 5503–5515 (1983).
[Crossref]
S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett. 37, 719–722 (1980).
[Crossref]
L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approach to the detection of near-infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
[Crossref]
P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, “Characterization of optically active defects created by noble gas ion bombardment of silicon,” J. Appl. Phys. 83, 4075–4080 (1998).
[Crossref]
H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]
S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett. 37, 719–722 (1980).
[Crossref]
G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, “The temperature dependence of the 969 meV ‘G’ optical transition in silicon,” Semiconductor Science and Technology 4, 200–206 (1989).
[Crossref]
L. Canham, K. Barraclough, and D. Robbins, “1.3μm light-emitting diode from silicon electron irradiated at its damage threshold,” Appl. Phys. Lett. 51, 1509–1511 (1987).
[Crossref]
L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watking, “bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B 42, 5765–5782 (1990).
[Crossref]
G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, “The temperature dependence of the 969 meV ‘G’ optical transition in silicon,” Semiconductor Science and Technology 4, 200–206 (1989).
[Crossref]
P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, “Characterization of optically active defects created by noble gas ion bombardment of silicon,” J. Appl. Phys. 83, 4075–4080 (1998).
[Crossref]
S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett. 37, 719–722 (1980).
[Crossref]
L. Canham, K. Barraclough, and D. Robbins, “1.3μm light-emitting diode from silicon electron irradiated at its damage threshold,” Appl. Phys. Lett. 51, 1509–1511 (1987).
[Crossref]
R. B. Capaz, A. Dal Pino, and J. D. Joannopoulos, “Theory of carbon-carbon pairs in silicon,” Phys. Rev. B 58, 9845–9850 (1998).
[Crossref]
J. Liang, H. Chik, A. Yin, and J. Xu, “Two-dimensional lateral superlattices of nanostructures: Nonlithographic: Formation by anodic membrane template,” J. Appl. Phys. 91, 2544–2564 (2002).
[Crossref]
S. Cloutier, C.-H. Hsu, P. Kosseyrev, and J. M. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[Crossref]
S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nature Mater. 4, 887–891, (2005).
[Crossref]
A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]
[PubMed]
Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approach to the detection of near-infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
[Crossref]
F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]
G Davies, E C Lightowlers, and M. do Carmo, “Carbon-related vibronic bands in electron-irradiated silicon,” J. Phys. C 16, 5503–5515 (1983).
[Crossref]
G. Davies, K. Kun, and T. Reade, “Annealing kinetics of the dicarbon radiation-damage center in crystalline silicon,” Phys. Rev. B 44, 12146–12157 (1991).
[Crossref]
G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, “The temperature dependence of the 969 meV ‘G’ optical transition in silicon,” Semiconductor Science and Technology 4, 200–206 (1989).
[Crossref]
G. Davies, “the optical properties of luminescence centres in silicon,” Phys. Rep. 176, 83–188 (1989).
[Crossref]
J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, “Photoluminescene detection of impurities introduced in silicon by dry etching processes,” Appl. Phys. A 41, 175–178 (1986).
[Crossref]
P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, “Characterization of optically active defects created by noble gas ion bombardment of silicon,” J. Appl. Phys. 83, 4075–4080 (1998).
[Crossref]
G Davies, E C Lightowlers, and M. do Carmo, “Carbon-related vibronic bands in electron-irradiated silicon,” J. Phys. C 16, 5503–5515 (1983).
[Crossref]
A. Dolgolenko, M. Varentsov, and G. Gaidar, “Energy level position of bistable CiCs defect in the B configuration in the forbidden band of n-Si,” Physica Status Solidi B 241, 2914–2922 (2004).
[Crossref]
H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]
H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]
S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett. 37, 719–722 (1980).
[Crossref]
L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High-speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref]
[PubMed]
F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]
L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref]
[PubMed]
A. Dolgolenko, M. Varentsov, and G. Gaidar, “Energy level position of bistable CiCs defect in the B configuration in the forbidden band of n-Si,” Physica Status Solidi B 241, 2914–2922 (2004).
[Crossref]
L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, “Optimization of Si1-xGex/Si waveguide photodetectors operating at λ = 1.3 μm,” J. Lightwave Technol. 14, 787–797 (1996).
[Crossref]
S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett. 37, 719–722 (1980).
[Crossref]
W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref]
[PubMed]
J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, “Photoluminescene detection of impurities introduced in silicon by dry etching processes,” Appl. Phys. A 41, 175–178 (1986).
[Crossref]
H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]
L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High-speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref]
[PubMed]
E. Lavrov, L. Hoffmann, and B. B. Nielsen, “Local vibrational modes of the metastable dicarbon center (CsCi) in silicon,” Phys. Rev. B 60, 8081–8086, (1999).
[Crossref]
W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref]
[PubMed]
S. Cloutier, C.-H. Hsu, P. Kosseyrev, and J. M. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[Crossref]
F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]
B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4610 (2006).
[Crossref]
O. Boyraz and B. Jalali, “Demonstration of a silicon raman laser,” Opt. Express 12, 5269–5272 (2005).
[Crossref]
L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, “Optimization of Si1-xGex/Si waveguide photodetectors operating at λ = 1.3 μm,” J. Lightwave Technol. 14, 787–797 (1996).
[Crossref]
R. B. Capaz, A. Dal Pino, and J. D. Joannopoulos, “Theory of carbon-carbon pairs in silicon,” Phys. Rev. B 58, 9845–9850 (1998).
[Crossref]
A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]
[PubMed]
H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]
[PubMed]
Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High-speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref]
[PubMed]
A. Kenyon, “Erbium in silicon,” Semiconductor Science and Technology 20, R65–R84 (2005).
[Crossref]
G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction. (Wiley , Chichester, U.K, 2004).
[Crossref]
S. Cloutier, C.-H. Hsu, P. Kosseyrev, and J. M. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[Crossref]
S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nature Mater. 4, 887–891, (2005).
[Crossref]
G. Davies, K. Kun, and T. Reade, “Annealing kinetics of the dicarbon radiation-damage center in crystalline silicon,” Phys. Rev. B 44, 12146–12157 (1991).
[Crossref]
H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]
[PubMed]
F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]
E. Lavrov, L. Hoffmann, and B. B. Nielsen, “Local vibrational modes of the metastable dicarbon center (CsCi) in silicon,” Phys. Rev. B 60, 8081–8086, (1999).
[Crossref]
W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref]
[PubMed]
J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]
J. Liang, H. Chik, A. Yin, and J. Xu, “Two-dimensional lateral superlattices of nanostructures: Nonlithographic: Formation by anodic membrane template,” J. Appl. Phys. 91, 2544–2564 (2002).
[Crossref]
L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High-speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref]
[PubMed]
Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
G Davies, E C Lightowlers, and M. do Carmo, “Carbon-related vibronic bands in electron-irradiated silicon,” J. Phys. C 16, 5503–5515 (1983).
[Crossref]
G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, “The temperature dependence of the 969 meV ‘G’ optical transition in silicon,” Semiconductor Science and Technology 4, 200–206 (1989).
[Crossref]
Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High-speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref]
[PubMed]
H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]
[PubMed]
L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, “Optimization of Si1-xGex/Si waveguide photodetectors operating at λ = 1.3 μm,” J. Lightwave Technol. 14, 787–797 (1996).
[Crossref]
L. Pavesi and D. J. Lockwood, Topics in Applied physics. volume 94: Silicon Photonics. (Springer-Verlag Berlin, Germany, 2004).
M. Potsidi and C. Londos, “The CiCs(Si-i) defect in silicon: An infrared spectroscopy study,” J. Appl. Phys. 100, 033523-033523-4 (2006).
[Crossref]
W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref]
[PubMed]
P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, “Characterization of optically active defects created by noble gas ion bombardment of silicon,” J. Appl. Phys. 83, 4075–4080 (1998).
[Crossref]
L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approach to the detection of near-infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
[Crossref]
J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]
L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref]
[PubMed]
F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]
L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High-speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref]
[PubMed]
L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, “Optimization of Si1-xGex/Si waveguide photodetectors operating at λ = 1.3 μm,” J. Lightwave Technol. 14, 787–797 (1996).
[Crossref]
L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref]
[PubMed]
W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref]
[PubMed]
Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
E. Lavrov, L. Hoffmann, and B. B. Nielsen, “Local vibrational modes of the metastable dicarbon center (CsCi) in silicon,” Phys. Rev. B 60, 8081–8086, (1999).
[Crossref]
F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]
H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]
[PubMed]
Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref]
[PubMed]
L. Pavesi and D. J. Lockwood, Topics in Applied physics. volume 94: Silicon Photonics. (Springer-Verlag Berlin, Germany, 2004).
P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, “Characterization of optically active defects created by noble gas ion bombardment of silicon,” J. Appl. Phys. 83, 4075–4080 (1998).
[Crossref]
J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]
R. B. Capaz, A. Dal Pino, and J. D. Joannopoulos, “Theory of carbon-carbon pairs in silicon,” Phys. Rev. B 58, 9845–9850 (1998).
[Crossref]
H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]
M. Potsidi and C. Londos, “The CiCs(Si-i) defect in silicon: An infrared spectroscopy study,” J. Appl. Phys. 100, 033523-033523-4 (2006).
[Crossref]
F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]
F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]
L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref]
[PubMed]
G. Davies, K. Kun, and T. Reade, “Annealing kinetics of the dicarbon radiation-damage center in crystalline silicon,” Phys. Rev. B 44, 12146–12157 (1991).
[Crossref]
G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction. (Wiley , Chichester, U.K, 2004).
[Crossref]
S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett. 37, 719–722 (1980).
[Crossref]
L. Canham, K. Barraclough, and D. Robbins, “1.3μm light-emitting diode from silicon electron irradiated at its damage threshold,” Appl. Phys. Lett. 51, 1509–1511 (1987).
[Crossref]
H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]
[PubMed]
L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High-speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref]
[PubMed]
Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High-speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref]
[PubMed]
Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, “Photoluminescene detection of impurities introduced in silicon by dry etching processes,” Appl. Phys. A 41, 175–178 (1986).
[Crossref]
H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]
W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref]
[PubMed]
J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, “Photoluminescene detection of impurities introduced in silicon by dry etching processes,” Appl. Phys. A 41, 175–178 (1986).
[Crossref]
L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watking, “bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B 42, 5765–5782 (1990).
[Crossref]
J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]
J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]
G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, “The temperature dependence of the 969 meV ‘G’ optical transition in silicon,” Semiconductor Science and Technology 4, 200–206 (1989).
[Crossref]
A. Dolgolenko, M. Varentsov, and G. Gaidar, “Energy level position of bistable CiCs defect in the B configuration in the forbidden band of n-Si,” Physica Status Solidi B 241, 2914–2922 (2004).
[Crossref]
J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]
L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watking, “bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B 42, 5765–5782 (1990).
[Crossref]
J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, “Photoluminescene detection of impurities introduced in silicon by dry etching processes,” Appl. Phys. A 41, 175–178 (1986).
[Crossref]
S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nature Mater. 4, 887–891, (2005).
[Crossref]
J. Liang, H. Chik, A. Yin, and J. Xu, “Two-dimensional lateral superlattices of nanostructures: Nonlithographic: Formation by anodic membrane template,” J. Appl. Phys. 91, 2544–2564 (2002).
[Crossref]
S. Cloutier, C.-H. Hsu, P. Kosseyrev, and J. M. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[Crossref]
H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]
[PubMed]
J. Liang, H. Chik, A. Yin, and J. Xu, “Two-dimensional lateral superlattices of nanostructures: Nonlithographic: Formation by anodic membrane template,” J. Appl. Phys. 91, 2544–2564 (2002).
[Crossref]
L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watking, “bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B 42, 5765–5782 (1990).
[Crossref]
S. Cloutier, C.-H. Hsu, P. Kosseyrev, and J. M. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[Crossref]
J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, “Photoluminescene detection of impurities introduced in silicon by dry etching processes,” Appl. Phys. A 41, 175–178 (1986).
[Crossref]
L. Canham, K. Barraclough, and D. Robbins, “1.3μm light-emitting diode from silicon electron irradiated at its damage threshold,” Appl. Phys. Lett. 51, 1509–1511 (1987).
[Crossref]
S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett. 37, 719–722 (1980).
[Crossref]
H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]
L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approach to the detection of near-infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
[Crossref]
F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]
J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]
J. Liang, H. Chik, A. Yin, and J. Xu, “Two-dimensional lateral superlattices of nanostructures: Nonlithographic: Formation by anodic membrane template,” J. Appl. Phys. 91, 2544–2564 (2002).
[Crossref]
P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, “Characterization of optically active defects created by noble gas ion bombardment of silicon,” J. Appl. Phys. 83, 4075–4080 (1998).
[Crossref]
M. Potsidi and C. Londos, “The CiCs(Si-i) defect in silicon: An infrared spectroscopy study,” J. Appl. Phys. 100, 033523-033523-4 (2006).
[Crossref]
M. Lipson, “Guiding, modulating, and emitting light on silicon challenges and opportunities,” J. Lightwave Technol. 23, 4222–4238 (2005).
[Crossref]
B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4610 (2006).
[Crossref]
L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, “Optimization of Si1-xGex/Si waveguide photodetectors operating at λ = 1.3 μm,” J. Lightwave Technol. 14, 787–797 (1996).
[Crossref]
G Davies, E C Lightowlers, and M. do Carmo, “Carbon-related vibronic bands in electron-irradiated silicon,” J. Phys. C 16, 5503–5515 (1983).
[Crossref]
Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref]
[PubMed]
H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref]
[PubMed]
L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref]
[PubMed]
S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nature Mater. 4, 887–891, (2005).
[Crossref]
O. Boyraz and B. Jalali, “Demonstration of a silicon raman laser,” Opt. Express 12, 5269–5272 (2005).
[Crossref]
L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High-speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref]
[PubMed]
J. Bao, M. Tabbal, T. Kim, S. Charnvanichborikarn, J. S. Williams, M. J. Aziz, and F. Capasso, “Point defect engineered Si sub-bandgap light-emitting diode,” Opt. Express 15, 6727–6733 (2007).
[Crossref]
[PubMed]
A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]
[PubMed]
G. Davies, “the optical properties of luminescence centres in silicon,” Phys. Rep. 176, 83–188 (1989).
[Crossref]
L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watking, “bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B 42, 5765–5782 (1990).
[Crossref]
G. Davies, K. Kun, and T. Reade, “Annealing kinetics of the dicarbon radiation-damage center in crystalline silicon,” Phys. Rev. B 44, 12146–12157 (1991).
[Crossref]
R. B. Capaz, A. Dal Pino, and J. D. Joannopoulos, “Theory of carbon-carbon pairs in silicon,” Phys. Rev. B 58, 9845–9850 (1998).
[Crossref]
E. Lavrov, L. Hoffmann, and B. B. Nielsen, “Local vibrational modes of the metastable dicarbon center (CsCi) in silicon,” Phys. Rev. B 60, 8081–8086, (1999).
[Crossref]
A. Dolgolenko, M. Varentsov, and G. Gaidar, “Energy level position of bistable CiCs defect in the B configuration in the forbidden band of n-Si,” Physica Status Solidi B 241, 2914–2922 (2004).
[Crossref]
G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, “The temperature dependence of the 969 meV ‘G’ optical transition in silicon,” Semiconductor Science and Technology 4, 200–206 (1989).
[Crossref]
A. Kenyon, “Erbium in silicon,” Semiconductor Science and Technology 20, R65–R84 (2005).
[Crossref]
G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction. (Wiley , Chichester, U.K, 2004).
[Crossref]
L. Pavesi and D. J. Lockwood, Topics in Applied physics. volume 94: Silicon Photonics. (Springer-Verlag Berlin, Germany, 2004).