Abstract

The enhanced optical absorptance in metals was recently demonstrated using femtosecond laser-induced surface structuring. This structuring was obtained by simply focusing the light to the sample surface. Here we demonstrate more efficient absorptance enhancement using interferometric ablation. This interferometric ablation technique produces deeper surface structures and, consequently, higher absorption than structures obtained by just focusing the light to the surface. We also show the measured reflectance spectra over visible region for unaltered and structured stainless steel and copper samples.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rapid fabrication of surface micro/nano structures with enhanced broadband absorption on Cu by picosecond laser

Peixun Fan, Minlin Zhong, Lin Li, Ting Huang, and Hongjun Zhang
Opt. Express 21(10) 11628-11637 (2013)

Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses

Yang Yang, Jianjun Yang, Chunyong Liang, and Hongshui Wang
Opt. Express 16(15) 11259-11265 (2008)

Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel

Litao Qi, Kazuhiro Nishii, and Yoshiharu Namba
Opt. Lett. 34(12) 1846-1848 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72, 195422 (2005).
    [Crossref]
  2. A. Y. Vorobyev and G. Guo, “Shot-to-shot correlation of residual energy and optical absorptance in femtosecond laser ablation,” Appl. Phys. A 86, 235–241 (2007).
    [Crossref]
  3. A. Y. Vorobyev and G. Guo, “Effect of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys. A 86, 321–324 (2007).
    [Crossref]
  4. A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86, 011916 (2005).
    [Crossref]
  5. A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and G. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A 82, 357–362 (2006).
    [Crossref]
  6. A. Y. Vorobyev and G. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14, 13113–13119 (2006).
    [Crossref] [PubMed]
  7. A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14, 2164–2169 (2006).
    [Crossref] [PubMed]
  8. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101, 034903 (2007).
    [Crossref]
  9. J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87, 251914 (2005).
    [Crossref]
  10. D. Maystre and R. Petit, “Brewster incidence for metallic gratings,” Opt. Commun. 17, 196–200 (1976).
    [Crossref]
  11. E. Popov, “Total absorption of light in metallic gratings: a comparative analysis of spectral dependence for shallow and deep grooves,” J. Mod. Opt. 36, 669–674 (1989).
    [Crossref]
  12. F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
    [Crossref]
  13. A. A. Maznev, T. F. Crimmins, and K. A. Nelson, “How to make femtosecond pulses overlap,” Opt. Lett. 23, 1378–1380 (1998).
    [Crossref]
  14. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
    [Crossref]
  15. Y. Nakata, T. Okada, and M. Maeda, “Lithographical laser ablation using femtosecond laser,” Appl. Phys. A 79, 1481–1483 (2004).
    [Crossref]
  16. R. Bruer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100, 1–5 (1993).
    [Crossref]
  17. E. Noponen and J. Turunen, “Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles,” J. Opt. Soc. Am. A 11, 2494–2502 (1994).
    [Crossref]
  18. L. Li,“New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2768 (1997).
    [Crossref]

2007 (3)

A. Y. Vorobyev and G. Guo, “Shot-to-shot correlation of residual energy and optical absorptance in femtosecond laser ablation,” Appl. Phys. A 86, 235–241 (2007).
[Crossref]

A. Y. Vorobyev and G. Guo, “Effect of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys. A 86, 321–324 (2007).
[Crossref]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101, 034903 (2007).
[Crossref]

2006 (3)

2005 (3)

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86, 011916 (2005).
[Crossref]

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87, 251914 (2005).
[Crossref]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72, 195422 (2005).
[Crossref]

2004 (1)

Y. Nakata, T. Okada, and M. Maeda, “Lithographical laser ablation using femtosecond laser,” Appl. Phys. A 79, 1481–1483 (2004).
[Crossref]

2001 (1)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[Crossref]

1999 (1)

1998 (1)

1997 (1)

1994 (1)

1993 (1)

R. Bruer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100, 1–5 (1993).
[Crossref]

1989 (1)

E. Popov, “Total absorption of light in metallic gratings: a comparative analysis of spectral dependence for shallow and deep grooves,” J. Mod. Opt. 36, 669–674 (1989).
[Crossref]

1976 (1)

D. Maystre and R. Petit, “Brewster incidence for metallic gratings,” Opt. Commun. 17, 196–200 (1976).
[Crossref]

Bruer, R.

R. Bruer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100, 1–5 (1993).
[Crossref]

Bryngdahl, O.

R. Bruer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100, 1–5 (1993).
[Crossref]

Bustarret, E.

Crimmins, T. F.

Dai, J.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and G. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A 82, 357–362 (2006).
[Crossref]

Dechelette, A.

Fournier, T.

Garcia-Vidal, F. J.

Guo, C.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101, 034903 (2007).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14, 2164–2169 (2006).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72, 195422 (2005).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86, 011916 (2005).
[Crossref]

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87, 251914 (2005).
[Crossref]

Guo, G.

A. Y. Vorobyev and G. Guo, “Effect of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys. A 86, 321–324 (2007).
[Crossref]

A. Y. Vorobyev and G. Guo, “Shot-to-shot correlation of residual energy and optical absorptance in femtosecond laser ablation,” Appl. Phys. A 86, 235–241 (2007).
[Crossref]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and G. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A 82, 357–362 (2006).
[Crossref]

A. Y. Vorobyev and G. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14, 13113–13119 (2006).
[Crossref] [PubMed]

Juodkazis, S.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[Crossref]

Kohns, P.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and G. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A 82, 357–362 (2006).
[Crossref]

Kokody, N. G.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and G. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A 82, 357–362 (2006).
[Crossref]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[Crossref]

Kuzmichev, V. M.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and G. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A 82, 357–362 (2006).
[Crossref]

Li, L.

Lopez-Rios, T.

Maeda, M.

Y. Nakata, T. Okada, and M. Maeda, “Lithographical laser ablation using femtosecond laser,” Appl. Phys. A 79, 1481–1483 (2004).
[Crossref]

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101, 034903 (2007).
[Crossref]

Matsuo, S.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[Crossref]

Maystre, D.

D. Maystre and R. Petit, “Brewster incidence for metallic gratings,” Opt. Commun. 17, 196–200 (1976).
[Crossref]

Maznev, A. A.

Misawa, H.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[Crossref]

Nakata, Y.

Y. Nakata, T. Okada, and M. Maeda, “Lithographical laser ablation using femtosecond laser,” Appl. Phys. A 79, 1481–1483 (2004).
[Crossref]

Nelson, K. A.

Noponen, E.

Okada, T.

Y. Nakata, T. Okada, and M. Maeda, “Lithographical laser ablation using femtosecond laser,” Appl. Phys. A 79, 1481–1483 (2004).
[Crossref]

Pannetier, B.

Petit, R.

D. Maystre and R. Petit, “Brewster incidence for metallic gratings,” Opt. Commun. 17, 196–200 (1976).
[Crossref]

Popov, E.

E. Popov, “Total absorption of light in metallic gratings: a comparative analysis of spectral dependence for shallow and deep grooves,” J. Mod. Opt. 36, 669–674 (1989).
[Crossref]

Sanchez-Dehesa, J.

Turunen, J.

Vorobyev, A. Y.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101, 034903 (2007).
[Crossref]

A. Y. Vorobyev and G. Guo, “Effect of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys. A 86, 321–324 (2007).
[Crossref]

A. Y. Vorobyev and G. Guo, “Shot-to-shot correlation of residual energy and optical absorptance in femtosecond laser ablation,” Appl. Phys. A 86, 235–241 (2007).
[Crossref]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and G. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A 82, 357–362 (2006).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14, 2164–2169 (2006).
[Crossref] [PubMed]

A. Y. Vorobyev and G. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14, 13113–13119 (2006).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86, 011916 (2005).
[Crossref]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72, 195422 (2005).
[Crossref]

Wang, J.

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87, 251914 (2005).
[Crossref]

Appl. Phys. A (4)

A. Y. Vorobyev and G. Guo, “Shot-to-shot correlation of residual energy and optical absorptance in femtosecond laser ablation,” Appl. Phys. A 86, 235–241 (2007).
[Crossref]

A. Y. Vorobyev and G. Guo, “Effect of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys. A 86, 321–324 (2007).
[Crossref]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and G. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A 82, 357–362 (2006).
[Crossref]

Y. Nakata, T. Okada, and M. Maeda, “Lithographical laser ablation using femtosecond laser,” Appl. Phys. A 79, 1481–1483 (2004).
[Crossref]

Appl. Phys. Lett. (3)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86, 011916 (2005).
[Crossref]

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87, 251914 (2005).
[Crossref]

J. Appl. Phys. (1)

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101, 034903 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

E. Popov, “Total absorption of light in metallic gratings: a comparative analysis of spectral dependence for shallow and deep grooves,” J. Mod. Opt. 36, 669–674 (1989).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Commun. (2)

R. Bruer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100, 1–5 (1993).
[Crossref]

D. Maystre and R. Petit, “Brewster incidence for metallic gratings,” Opt. Commun. 17, 196–200 (1976).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72, 195422 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Interferometric ablation set-up.

Fig. 2.
Fig. 2.

Structured surface using direct focusing of femtosecond light to the steel sample. Structures obtained using 200 pulses with average fluence of 0.2 J/cm2. The polarization of light was linear and oriented vertically.

Fig. 3.
Fig. 3.

Structured surface using interferometric femtosecond ablation on the steel sample. Structures obtained using 200 pulses with average fluence of 0.2 J/cm2.The polarization of light was linear and oriented vertically.

Fig. 4.
Fig. 4.

Measured reflectance spectra for polished steel (above), structured surface using direct focusing (middle) and structured surface using interferometric ablation (bottom).

Fig. 5.
Fig. 5.

Measured reflectance spectra for polished copper (above), structured surface using direct focusing (middle) and structured surface using interferometric ablation (bottom).

Fig. 6.
Fig. 6.

Theoretical reflectance of the steel surface with cylindrical holes.

Metrics