Abstract

On the basis of Maxwell’s equations a light scattering system of axial symmetry is considered, which consists of a nanoparticle, a dipole and a metal film (covering a dielectric support). Nanoparticle (NP) and dipole are situated on an axis of symmetry and the dipole is oriented along the axis and placed between film and nanoparticle. The field enhancement factor F and dipole energy flux D are calculated by the Green’s function method: the initial system of Maxwell’s equations is reduced to a system of boundary integral equations, and solutions are obtained by the boundary element method. Illumination of the scattering system by a radially polarized Bessel light beam causes a field enhancement in the vicinity of the film surface. The metallic NP closely placed at the film surface acts as nano-antenna. Surface plasmons excited in the particle and film convert the incident propagating EM field into non-propagating evanescent near-field. Then the field is confined and strongly enhanced in a particle/film gap. The enhancement of Raman radiation depends on many factors: size and shape of NP, permittivities of all materials, light wavelength, film thickness, angle of light beam, and - very strongly - on the gap distance. The field enhancement in a gap ∼1 nm can be 103 and more and the Raman radiation enhancement factor can reach huge values ∼1010-1012. Whereas for small nanoparticles the field enhancement factor F and the dipole energy flux D do not depend on the direction of the exciting beam and on the angle of emission, a strong influence is found for extended particles. This influence is plausibly explained by a larger overlap between the electric field of the exciting beam or the emitted radiation field with the near field distribution of the nanoparticle leading to higher F and D values, respectively.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1 (1977).
    [CrossRef]
  2. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783 (1985).
    [CrossRef]
  3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
    [CrossRef]
  4. S. M. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface enhanced Raman Scattering," Science 275, 1102 (1997).
    [CrossRef] [PubMed]
  5. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999).
    [CrossRef]
  6. A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman Spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932 (1999).
    [CrossRef]
  7. J. Wessel, "Surface-enhanced optical microscopy," J. Opt. Soc. Am. B 2, 1538 (1985).
    [CrossRef]
  8. U. C. Fischer and D. W. Pohl, "Observation of single-particle plasmons by near-field optical microscopy," Phys. Rev. Lett. 62, 458 (1989).
    [CrossRef] [PubMed]
  9. Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159 (1994).
    [CrossRef] [PubMed]
  10. M. Inoue and K. Ohtaka, "Surface Enhanced Raman Scattering by metal spheres. I. Cluster effect," Phys. Soc. Japan 52, 3853 (1983).
    [CrossRef]
  11. T. Takemori, M. Inoue, and K. Ohtaka, "Optical response of a sphere coupled to a metal substrate," J. Phys. Soc. Japan 56, 1587 (1987).
    [CrossRef]
  12. M. S. Anderson, "Locally enhanced Raman spectroscopy with an atomic force microscope," Appl. Phys. Lett. 76, 3130 (2000).
    [CrossRef]
  13. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman microscopy," Chem. Phys. Lett. 318, 131 (2000).
    [CrossRef]
  14. N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, "Near-field enhanced Raman spectroscopy using side illumination optics," J. Appl. Phys. 92, 6983 (2002).
    [CrossRef]
  15. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541 (2005).
    [CrossRef]
  16. K. Li, M.I. Stockman, and D.J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  17. M. Futamata, Y. Maruyama, and M. Ishikawa, "Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method," J. Phys. Chem. B 107, 7607 (2003).
    [CrossRef]
  18. A. Downes, D. Salter, and A. Elfick, "Heating effects in tip-enhanced optical microscopy," Opt. Express 14, 5216 (2006).
    [CrossRef] [PubMed]
  19. P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev B 70, 075402 (2004).
    [CrossRef]
  20. P. I. Geshev and K. Dickmann, "Enhanced radiation of a dipole placed between a metallic surface and a nanoparticle," J. Opt. A: Pure Appl. Opt. 8, S161 (2006).
    [CrossRef]
  21. A. Sommerfeld, Partial differential equations in physics, (Academic Press, New-York, 1967).
  22. F. J. Garcia de Abajo and A. Howie, "Retarded field calculation of electron energy loss in inhomogeneous dielectrics," Phys. Rev. B 65, 115418 (2002).
    [CrossRef]
  23. J. Aizpurua, G.W. Bryant, L. J. Richter, and F.J. Garcia de Abajo, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
    [CrossRef]
  24. E. Kretschmann,"Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingungen," Z. Physik,  241, 313 (1971).
    [CrossRef]
  25. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251 (2001).
    [CrossRef] [PubMed]
  26. T. Grosjean, D. Courjon, and D. Van Labeke, "Bessel beams as virtual tips for near-field optics," J. Microsc. 210, 319-323 (2003).
    [CrossRef] [PubMed]
  27. K. Sakoda, K. Ohtaka, and E. Hanamura, "Surface enhanced Raman Scattering in attenuated total reflection arrangement," Solid State Comm. 41, 393 (1982).
    [CrossRef]
  28. B. Pettinger, A. Tadjeddine, and D. M. Kolb, "Enhancement in Raman intensity by use of surface plasmons," Chem. Phys. Lett. 66, 544 (1979).
    [CrossRef]
  29. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  30. A. Otto, "On the electronic contribution to single molecule surface enhanced Raman spectroscopy," Indian J. Phys. B 77, 63 (2003).
  31. L. D. Landau and E. M. Lifschiz, Elektrodynamik der Kontinua, (Akademi-Verlag, Berlin,1974).
  32. E. C. Le Ru and P. G. Etchegoin, "Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy," Chem. Phys. Lett. 423, 63 (2006).
    [CrossRef]
  33. L. Novotny, and B. Hecht, Principles of Nano-Optics, (Cambridge University Press, New York, 2006).
  34. P. Johansson, "Light emission from a scanning tunneling microscope: Fully retarded calculation," Phys. Rev. B 58, 10823 (1998).
    [CrossRef]
  35. E. I. Ibragimov and A. G. Malshukov, "Landau damping of plasma oscillations localized near a STM tip apex," Opt. Spectrosc. 76, 350 (1994).

2006 (3)

A. Downes, D. Salter, and A. Elfick, "Heating effects in tip-enhanced optical microscopy," Opt. Express 14, 5216 (2006).
[CrossRef] [PubMed]

P. I. Geshev and K. Dickmann, "Enhanced radiation of a dipole placed between a metallic surface and a nanoparticle," J. Opt. A: Pure Appl. Opt. 8, S161 (2006).
[CrossRef]

E. C. Le Ru and P. G. Etchegoin, "Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy," Chem. Phys. Lett. 423, 63 (2006).
[CrossRef]

2005 (2)

J. Aizpurua, G.W. Bryant, L. J. Richter, and F.J. Garcia de Abajo, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541 (2005).
[CrossRef]

2004 (1)

P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev B 70, 075402 (2004).
[CrossRef]

2003 (3)

K. Li, M.I. Stockman, and D.J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

M. Futamata, Y. Maruyama, and M. Ishikawa, "Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method," J. Phys. Chem. B 107, 7607 (2003).
[CrossRef]

T. Grosjean, D. Courjon, and D. Van Labeke, "Bessel beams as virtual tips for near-field optics," J. Microsc. 210, 319-323 (2003).
[CrossRef] [PubMed]

2002 (2)

F. J. Garcia de Abajo and A. Howie, "Retarded field calculation of electron energy loss in inhomogeneous dielectrics," Phys. Rev. B 65, 115418 (2002).
[CrossRef]

N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, "Near-field enhanced Raman spectroscopy using side illumination optics," J. Appl. Phys. 92, 6983 (2002).
[CrossRef]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

2000 (2)

M. S. Anderson, "Locally enhanced Raman spectroscopy with an atomic force microscope," Appl. Phys. Lett. 76, 3130 (2000).
[CrossRef]

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman microscopy," Chem. Phys. Lett. 318, 131 (2000).
[CrossRef]

1999 (2)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999).
[CrossRef]

A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman Spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932 (1999).
[CrossRef]

1998 (1)

P. Johansson, "Light emission from a scanning tunneling microscope: Fully retarded calculation," Phys. Rev. B 58, 10823 (1998).
[CrossRef]

1997 (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

S. M. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface enhanced Raman Scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

1994 (2)

Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159 (1994).
[CrossRef] [PubMed]

E. I. Ibragimov and A. G. Malshukov, "Landau damping of plasma oscillations localized near a STM tip apex," Opt. Spectrosc. 76, 350 (1994).

1989 (1)

U. C. Fischer and D. W. Pohl, "Observation of single-particle plasmons by near-field optical microscopy," Phys. Rev. Lett. 62, 458 (1989).
[CrossRef] [PubMed]

1987 (1)

T. Takemori, M. Inoue, and K. Ohtaka, "Optical response of a sphere coupled to a metal substrate," J. Phys. Soc. Japan 56, 1587 (1987).
[CrossRef]

1985 (2)

J. Wessel, "Surface-enhanced optical microscopy," J. Opt. Soc. Am. B 2, 1538 (1985).
[CrossRef]

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783 (1985).
[CrossRef]

1983 (1)

M. Inoue and K. Ohtaka, "Surface Enhanced Raman Scattering by metal spheres. I. Cluster effect," Phys. Soc. Japan 52, 3853 (1983).
[CrossRef]

1982 (1)

K. Sakoda, K. Ohtaka, and E. Hanamura, "Surface enhanced Raman Scattering in attenuated total reflection arrangement," Solid State Comm. 41, 393 (1982).
[CrossRef]

1979 (1)

B. Pettinger, A. Tadjeddine, and D. M. Kolb, "Enhancement in Raman intensity by use of surface plasmons," Chem. Phys. Lett. 66, 544 (1979).
[CrossRef]

1977 (1)

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1 (1977).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1971 (1)

E. Kretschmann,"Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingungen," Z. Physik,  241, 313 (1971).
[CrossRef]

Aizpurua, J.

J. Aizpurua, G.W. Bryant, L. J. Richter, and F.J. Garcia de Abajo, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Anderson, M. S.

M. S. Anderson, "Locally enhanced Raman spectroscopy with an atomic force microscope," Appl. Phys. Lett. 76, 3130 (2000).
[CrossRef]

Bergman, D.J.

K. Li, M.I. Stockman, and D.J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999).
[CrossRef]

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999).
[CrossRef]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Brus, L. E.

A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman Spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932 (1999).
[CrossRef]

Bryant, G. W.

J. Aizpurua, G.W. Bryant, L. J. Richter, and F.J. Garcia de Abajo, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Courjon, D.

T. Grosjean, D. Courjon, and D. Van Labeke, "Bessel beams as virtual tips for near-field optics," J. Microsc. 210, 319-323 (2003).
[CrossRef] [PubMed]

Dasari, R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Deckert, V.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman microscopy," Chem. Phys. Lett. 318, 131 (2000).
[CrossRef]

Dickmann, K.

P. I. Geshev and K. Dickmann, "Enhanced radiation of a dipole placed between a metallic surface and a nanoparticle," J. Opt. A: Pure Appl. Opt. 8, S161 (2006).
[CrossRef]

P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev B 70, 075402 (2004).
[CrossRef]

Downes, A.

Elfick, A.

Emory, S. R.

S. M. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface enhanced Raman Scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

Ertl, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541 (2005).
[CrossRef]

Etchegoin, P. G.

E. C. Le Ru and P. G. Etchegoin, "Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy," Chem. Phys. Lett. 423, 63 (2006).
[CrossRef]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Fischer, U. C.

U. C. Fischer and D. W. Pohl, "Observation of single-particle plasmons by near-field optical microscopy," Phys. Rev. Lett. 62, 458 (1989).
[CrossRef] [PubMed]

Futamata, M.

M. Futamata, Y. Maruyama, and M. Ishikawa, "Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method," J. Phys. Chem. B 107, 7607 (2003).
[CrossRef]

Garcia de Abajo, F. J.

J. Aizpurua, G.W. Bryant, L. J. Richter, and F.J. Garcia de Abajo, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Garcia de Abajo, F.J.

F. J. Garcia de Abajo and A. Howie, "Retarded field calculation of electron energy loss in inhomogeneous dielectrics," Phys. Rev. B 65, 115418 (2002).
[CrossRef]

Geshev, P. I.

P. I. Geshev and K. Dickmann, "Enhanced radiation of a dipole placed between a metallic surface and a nanoparticle," J. Opt. A: Pure Appl. Opt. 8, S161 (2006).
[CrossRef]

P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev B 70, 075402 (2004).
[CrossRef]

Grosjean, T.

T. Grosjean, D. Courjon, and D. Van Labeke, "Bessel beams as virtual tips for near-field optics," J. Microsc. 210, 319-323 (2003).
[CrossRef] [PubMed]

Hanamura, E.

K. Sakoda, K. Ohtaka, and E. Hanamura, "Surface enhanced Raman Scattering in attenuated total reflection arrangement," Solid State Comm. 41, 393 (1982).
[CrossRef]

Hayazawa, N.

N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, "Near-field enhanced Raman spectroscopy using side illumination optics," J. Appl. Phys. 92, 6983 (2002).
[CrossRef]

Hietschold, M.

P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev B 70, 075402 (2004).
[CrossRef]

Howie, A.

F. J. Garcia de Abajo and A. Howie, "Retarded field calculation of electron energy loss in inhomogeneous dielectrics," Phys. Rev. B 65, 115418 (2002).
[CrossRef]

Ibragimov, E. I.

E. I. Ibragimov and A. G. Malshukov, "Landau damping of plasma oscillations localized near a STM tip apex," Opt. Spectrosc. 76, 350 (1994).

Inoue, M.

T. Takemori, M. Inoue, and K. Ohtaka, "Optical response of a sphere coupled to a metal substrate," J. Phys. Soc. Japan 56, 1587 (1987).
[CrossRef]

M. Inoue and K. Ohtaka, "Surface Enhanced Raman Scattering by metal spheres. I. Cluster effect," Phys. Soc. Japan 52, 3853 (1983).
[CrossRef]

Inouye, Y.

N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, "Near-field enhanced Raman spectroscopy using side illumination optics," J. Appl. Phys. 92, 6983 (2002).
[CrossRef]

Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159 (1994).
[CrossRef] [PubMed]

Ishikawa, M.

M. Futamata, Y. Maruyama, and M. Ishikawa, "Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method," J. Phys. Chem. B 107, 7607 (2003).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1 (1977).
[CrossRef]

Johansson, P.

P. Johansson, "Light emission from a scanning tunneling microscope: Fully retarded calculation," Phys. Rev. B 58, 10823 (1998).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Käll, M.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999).
[CrossRef]

Kawata, S.

N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, "Near-field enhanced Raman spectroscopy using side illumination optics," J. Appl. Phys. 92, 6983 (2002).
[CrossRef]

Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159 (1994).
[CrossRef] [PubMed]

Klein, S.

P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev B 70, 075402 (2004).
[CrossRef]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Kolb, D.M.

B. Pettinger, A. Tadjeddine, and D. M. Kolb, "Enhancement in Raman intensity by use of surface plasmons," Chem. Phys. Lett. 66, 544 (1979).
[CrossRef]

Kretschmann, E.

E. Kretschmann,"Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingungen," Z. Physik,  241, 313 (1971).
[CrossRef]

Le Ru, E. C.

E. C. Le Ru and P. G. Etchegoin, "Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy," Chem. Phys. Lett. 423, 63 (2006).
[CrossRef]

Li, K.

K. Li, M.I. Stockman, and D.J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Malshukov, A. G.

E. I. Ibragimov and A. G. Malshukov, "Landau damping of plasma oscillations localized near a STM tip apex," Opt. Spectrosc. 76, 350 (1994).

Maruyama, Y.

M. Futamata, Y. Maruyama, and M. Ishikawa, "Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method," J. Phys. Chem. B 107, 7607 (2003).
[CrossRef]

Michaels, A. M.

A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman Spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932 (1999).
[CrossRef]

Moskovits, M.

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783 (1985).
[CrossRef]

Nie, S. M.

S. M. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface enhanced Raman Scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

Nirmal, M.

A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman Spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932 (1999).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Ohtaka, K.

T. Takemori, M. Inoue, and K. Ohtaka, "Optical response of a sphere coupled to a metal substrate," J. Phys. Soc. Japan 56, 1587 (1987).
[CrossRef]

M. Inoue and K. Ohtaka, "Surface Enhanced Raman Scattering by metal spheres. I. Cluster effect," Phys. Soc. Japan 52, 3853 (1983).
[CrossRef]

K. Sakoda, K. Ohtaka, and E. Hanamura, "Surface enhanced Raman Scattering in attenuated total reflection arrangement," Solid State Comm. 41, 393 (1982).
[CrossRef]

Otto, A.

A. Otto, "On the electronic contribution to single molecule surface enhanced Raman spectroscopy," Indian J. Phys. B 77, 63 (2003).

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Pettinger, B.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541 (2005).
[CrossRef]

B. Pettinger, A. Tadjeddine, and D. M. Kolb, "Enhancement in Raman intensity by use of surface plasmons," Chem. Phys. Lett. 66, 544 (1979).
[CrossRef]

Picardi, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541 (2005).
[CrossRef]

Pohl, D. W.

U. C. Fischer and D. W. Pohl, "Observation of single-particle plasmons by near-field optical microscopy," Phys. Rev. Lett. 62, 458 (1989).
[CrossRef] [PubMed]

Ren, B.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541 (2005).
[CrossRef]

Richter, L. J.

J. Aizpurua, G.W. Bryant, L. J. Richter, and F.J. Garcia de Abajo, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Sakoda, K.

K. Sakoda, K. Ohtaka, and E. Hanamura, "Surface enhanced Raman Scattering in attenuated total reflection arrangement," Solid State Comm. 41, 393 (1982).
[CrossRef]

Salter, D.

Schuster, R.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541 (2005).
[CrossRef]

Stöckle, R. M.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman microscopy," Chem. Phys. Lett. 318, 131 (2000).
[CrossRef]

Stockman, M.I.

K. Li, M.I. Stockman, and D.J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Suh, Y. D.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman microscopy," Chem. Phys. Lett. 318, 131 (2000).
[CrossRef]

Tadjeddine, A.

B. Pettinger, A. Tadjeddine, and D. M. Kolb, "Enhancement in Raman intensity by use of surface plasmons," Chem. Phys. Lett. 66, 544 (1979).
[CrossRef]

Takemori, T.

T. Takemori, M. Inoue, and K. Ohtaka, "Optical response of a sphere coupled to a metal substrate," J. Phys. Soc. Japan 56, 1587 (1987).
[CrossRef]

Tarun, A.

N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, "Near-field enhanced Raman spectroscopy using side illumination optics," J. Appl. Phys. 92, 6983 (2002).
[CrossRef]

Van Duyne, R. P.

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1 (1977).
[CrossRef]

Van Labeke, D.

T. Grosjean, D. Courjon, and D. Van Labeke, "Bessel beams as virtual tips for near-field optics," J. Microsc. 210, 319-323 (2003).
[CrossRef] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Wessel, J.

Witting, T.

P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev B 70, 075402 (2004).
[CrossRef]

Xu, H.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Zenobi, R.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman microscopy," Chem. Phys. Lett. 318, 131 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

M. S. Anderson, "Locally enhanced Raman spectroscopy with an atomic force microscope," Appl. Phys. Lett. 76, 3130 (2000).
[CrossRef]

Chem. Phys. Lett. (3)

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman microscopy," Chem. Phys. Lett. 318, 131 (2000).
[CrossRef]

B. Pettinger, A. Tadjeddine, and D. M. Kolb, "Enhancement in Raman intensity by use of surface plasmons," Chem. Phys. Lett. 66, 544 (1979).
[CrossRef]

E. C. Le Ru and P. G. Etchegoin, "Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy," Chem. Phys. Lett. 423, 63 (2006).
[CrossRef]

J. Am. Chem. Soc. (1)

A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman Spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932 (1999).
[CrossRef]

J. Appl. Phys. (1)

N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, "Near-field enhanced Raman spectroscopy using side illumination optics," J. Appl. Phys. 92, 6983 (2002).
[CrossRef]

J. Electroanal. Chem. (1)

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1 (1977).
[CrossRef]

J. Microsc. (1)

T. Grosjean, D. Courjon, and D. Van Labeke, "Bessel beams as virtual tips for near-field optics," J. Microsc. 210, 319-323 (2003).
[CrossRef] [PubMed]

J. Opt. A: Pure Appl. Opt. (1)

P. I. Geshev and K. Dickmann, "Enhanced radiation of a dipole placed between a metallic surface and a nanoparticle," J. Opt. A: Pure Appl. Opt. 8, S161 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

M. Futamata, Y. Maruyama, and M. Ishikawa, "Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method," J. Phys. Chem. B 107, 7607 (2003).
[CrossRef]

J. Phys. Soc. Japan (1)

T. Takemori, M. Inoue, and K. Ohtaka, "Optical response of a sphere coupled to a metal substrate," J. Phys. Soc. Japan 56, 1587 (1987).
[CrossRef]

J. Raman Spectrosc. (1)

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Spectrosc. (1)

E. I. Ibragimov and A. G. Malshukov, "Landau damping of plasma oscillations localized near a STM tip apex," Opt. Spectrosc. 76, 350 (1994).

Phys. Rev B (1)

P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev B 70, 075402 (2004).
[CrossRef]

Phys. Rev. B (4)

F. J. Garcia de Abajo and A. Howie, "Retarded field calculation of electron energy loss in inhomogeneous dielectrics," Phys. Rev. B 65, 115418 (2002).
[CrossRef]

J. Aizpurua, G.W. Bryant, L. J. Richter, and F.J. Garcia de Abajo, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

P. Johansson, "Light emission from a scanning tunneling microscope: Fully retarded calculation," Phys. Rev. B 58, 10823 (1998).
[CrossRef]

Phys. Rev. Lett. (5)

K. Li, M.I. Stockman, and D.J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

U. C. Fischer and D. W. Pohl, "Observation of single-particle plasmons by near-field optical microscopy," Phys. Rev. Lett. 62, 458 (1989).
[CrossRef] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Phys. Soc. Japan (1)

M. Inoue and K. Ohtaka, "Surface Enhanced Raman Scattering by metal spheres. I. Cluster effect," Phys. Soc. Japan 52, 3853 (1983).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783 (1985).
[CrossRef]

Science (1)

S. M. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface enhanced Raman Scattering," Science 275, 1102 (1997).
[CrossRef] [PubMed]

Solid State Comm. (1)

K. Sakoda, K. Ohtaka, and E. Hanamura, "Surface enhanced Raman Scattering in attenuated total reflection arrangement," Solid State Comm. 41, 393 (1982).
[CrossRef]

Z. Physik (1)

E. Kretschmann,"Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingungen," Z. Physik,  241, 313 (1971).
[CrossRef]

Other (4)

A. Sommerfeld, Partial differential equations in physics, (Academic Press, New-York, 1967).

L. Novotny, and B. Hecht, Principles of Nano-Optics, (Cambridge University Press, New York, 2006).

A. Otto, "On the electronic contribution to single molecule surface enhanced Raman spectroscopy," Indian J. Phys. B 77, 63 (2003).

L. D. Landau and E. M. Lifschiz, Elektrodynamik der Kontinua, (Akademi-Verlag, Berlin,1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Light scattering system.

Fig. 2.
Fig. 2.

(a) Film amplification factors for electric field (A) and for dipole energy flux (J); (b) Raman radiation enhancement factor I describing the effect of metallic film.

Fig. 3.
Fig. 3.

Relative field enhancement factors F CLOSE and F FAR (insets) vs. gap distance g: a) Ag sphere d = 50 nm; light wavelength λ=510 nm; b) Ag sphere d = 100 nm; λ=660 nm. Film thicknesses are h=0, 10, 20, 50 nm; BB angle is θ= 44°.

Fig. 4.
Fig. 4.

Enhancement factors vs. light wavelength: a) Comparison of F 2 and D factors (inset, Ag sphere d=100 nm, g=1 nm); b) REF ++ for BB angles θ=43°, 44°, 46° (ATR), and REF -+ for non-ATR angle - 45° (in the inset the film factor A is shown). Dipole position is z 0=-0.5 nm.

Fig. 5.
Fig. 5.

Relative enhancement factors vs. photon’s energy for: a) oblate spheroid; b) prolate spheroid; c) long NP with a tip radius of curvature R c∼1 nm; d) the same NP as in (c), but for non-ATR angle of light illumination. Note the behavior of solid lines (F + 2) in cases (c) and (d). BB angles for figures (a), (b), (c) are ±45°, for figure (d) the angle is ±40°.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E z = E 0 sin θ [ e i kx + R ( θ ) e i k′x ] = E 0 sin θ [ e ikz cos θ + R ( θ ) e ikz cos θ ]
[ J 0 ( k ρ sin θ ) + 2 n = 0 J n ( k ρ sin θ ) i n cos n ( φ ψ ) ]
A + = E + ( z 0 , ) / E 0 ; A = E ( z 0 , ) / E 0 ; J + = j + ( z 0 , ) / j 0 ; J = j ( z 0 , ) / j 0 ,
A + = ( 1 Λ e f ) ( 1 + Λ s f ) exp [ i ( χ f χ s ) h i χ e z 0 ] [ 1 Λ e f Λ s f exp ( 2 i χ f h ) ] ε s ε e sin θ
Λ i j = χ i ε j χ j ε i χ i ε j + χ j ε i ; χ i = ε i ε s sin 2 θ ; ( i , j = e , f , s ) .
sin θ = Re ( ε s ε e + ε s ε f ( ω res ) ) 1 2

Metrics