Abstract

We have produced high transmission sub-wavelength tapered optical fibers for the purpose of whispering gallery mode coupling in fused silica microcavities at 780 nm. A detailed analysis of the fiber transmittance evolution during tapering is demonstrated to reflect precisely the mode coupling and cutoff in the fiber. This allows to control the final size, the number of guided modes and their effective index. These results are checked by evanescent wave mapping measurements on the resulting taper.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, "Broad-band all-fiber filters for wavelength division multiplexing application," Appl. Phys. Lett. 54, 1290-1292 (1989).
    [CrossRef]
  2. T. A. Birks, W. J. Wadsworth, and P. S. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  3. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper," Opt. Lett. 22(15), 1129-1131 (1997).
    [CrossRef] [PubMed]
  4. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett.  91(4), 043,902 (2003).
    [CrossRef]
  5. A. W. Snyder, "Coupling of modes on a tapered dielectric cylinder," IEEE Trans. Microwave Theory Tech. MT18(7), 383 (1970).
    [CrossRef]
  6. J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered Single-Mode Fibres and Devices Part 1 : Adiabaticity Criteria," IEE PROCEEDINGS 138, 343-354 (1991).
  7. P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, "Fabrication, Modeling, and Direct Evanescent Field Measurement of Tapered Optical Fiber Sensors," J. Appl. Phys. 85, 3395-3398 (1999).
    [CrossRef]
  8. T. A. Birks and Y. W. Li, "The Shape of Fiber Tapers," J. Lightwave Technol. 10, 432-438 (1992).
    [CrossRef]
  9. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  10. "Spectrogram," Wikipedia URL http://en.wikipedia.org/wiki/Spectrogram.
  11. J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lef`evre-Seguin, J. M. Raimond, and S. Haroche, "Characterizing whispering-gallery modes in microspheres by direct observation of the optical standing wave in the near field," Opt. Lett. 21, 698 (1996).
    [CrossRef] [PubMed]

2000 (1)

1999 (1)

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, "Fabrication, Modeling, and Direct Evanescent Field Measurement of Tapered Optical Fiber Sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

1997 (1)

1996 (1)

1992 (1)

T. A. Birks and Y. W. Li, "The Shape of Fiber Tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

1991 (1)

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered Single-Mode Fibres and Devices Part 1 : Adiabaticity Criteria," IEE PROCEEDINGS 138, 343-354 (1991).

1989 (1)

F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, "Broad-band all-fiber filters for wavelength division multiplexing application," Appl. Phys. Lett. 54, 1290-1292 (1989).
[CrossRef]

1970 (1)

A. W. Snyder, "Coupling of modes on a tapered dielectric cylinder," IEEE Trans. Microwave Theory Tech. MT18(7), 383 (1970).
[CrossRef]

Birks, T. A.

Black, R.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered Single-Mode Fibres and Devices Part 1 : Adiabaticity Criteria," IEE PROCEEDINGS 138, 343-354 (1991).

Black, R. J.

F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, "Broad-band all-fiber filters for wavelength division multiplexing application," Appl. Phys. Lett. 54, 1290-1292 (1989).
[CrossRef]

Bures, J.

F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, "Broad-band all-fiber filters for wavelength division multiplexing application," Appl. Phys. Lett. 54, 1290-1292 (1989).
[CrossRef]

Cahill, L. W.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, "Fabrication, Modeling, and Direct Evanescent Field Measurement of Tapered Optical Fiber Sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

Cheung, G.

Daxhelet, X.

F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, "Broad-band all-fiber filters for wavelength division multiplexing application," Appl. Phys. Lett. 54, 1290-1292 (1989).
[CrossRef]

Dubreuil, N.

Gonthier, F.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered Single-Mode Fibres and Devices Part 1 : Adiabaticity Criteria," IEE PROCEEDINGS 138, 343-354 (1991).

F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, "Broad-band all-fiber filters for wavelength division multiplexing application," Appl. Phys. Lett. 54, 1290-1292 (1989).
[CrossRef]

Hare, J.

Haroche, S.

Henry, W.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered Single-Mode Fibres and Devices Part 1 : Adiabaticity Criteria," IEE PROCEEDINGS 138, 343-354 (1991).

Huntington, S. T.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, "Fabrication, Modeling, and Direct Evanescent Field Measurement of Tapered Optical Fiber Sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

Jacques, F.

Katsifolis, J.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, "Fabrication, Modeling, and Direct Evanescent Field Measurement of Tapered Optical Fiber Sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

Knight, J. C.

Lacroix, S.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered Single-Mode Fibres and Devices Part 1 : Adiabaticity Criteria," IEE PROCEEDINGS 138, 343-354 (1991).

F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, "Broad-band all-fiber filters for wavelength division multiplexing application," Appl. Phys. Lett. 54, 1290-1292 (1989).
[CrossRef]

Lef`evre-Seguin, V.

Li, Y. W.

T. A. Birks and Y. W. Li, "The Shape of Fiber Tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Love, J.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered Single-Mode Fibres and Devices Part 1 : Adiabaticity Criteria," IEE PROCEEDINGS 138, 343-354 (1991).

Moar, P. N.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, "Fabrication, Modeling, and Direct Evanescent Field Measurement of Tapered Optical Fiber Sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

Nugent, K. A.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, "Fabrication, Modeling, and Direct Evanescent Field Measurement of Tapered Optical Fiber Sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

Raimond, J. M.

Roberts, A.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, "Fabrication, Modeling, and Direct Evanescent Field Measurement of Tapered Optical Fiber Sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

Russell, P. S.

Sandoghdar, V.

Snyder, A. W.

A. W. Snyder, "Coupling of modes on a tapered dielectric cylinder," IEEE Trans. Microwave Theory Tech. MT18(7), 383 (1970).
[CrossRef]

Stewart, W.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered Single-Mode Fibres and Devices Part 1 : Adiabaticity Criteria," IEE PROCEEDINGS 138, 343-354 (1991).

Wadsworth, W. J.

Appl. Phys. Lett. (1)

F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, "Broad-band all-fiber filters for wavelength division multiplexing application," Appl. Phys. Lett. 54, 1290-1292 (1989).
[CrossRef]

IEE PROCEEDINGS (1)

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, "Tapered Single-Mode Fibres and Devices Part 1 : Adiabaticity Criteria," IEE PROCEEDINGS 138, 343-354 (1991).

IEEE Trans. Microwave Theory Tech. (1)

A. W. Snyder, "Coupling of modes on a tapered dielectric cylinder," IEEE Trans. Microwave Theory Tech. MT18(7), 383 (1970).
[CrossRef]

J. Appl. Phys. (1)

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, "Fabrication, Modeling, and Direct Evanescent Field Measurement of Tapered Optical Fiber Sensors," J. Appl. Phys. 85, 3395-3398 (1999).
[CrossRef]

J. Lightwave Technol. (1)

T. A. Birks and Y. W. Li, "The Shape of Fiber Tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Opt. Lett. (3)

Other (3)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett.  91(4), 043,902 (2003).
[CrossRef]

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

"Spectrogram," Wikipedia URL http://en.wikipedia.org/wiki/Spectrogram.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Top: Sketch of the experiment, showing the microtorch in the center, the two fiber-clamps FC, the rod R, the motorized translation stages MTS, the photodiode PD. Bottom: Shape of the resulting taper (not to scale), with definition of abscissa z, lengthening L, hot-zone h, taper waist w, initial radius r 0.

Fig. 2.
Fig. 2.

Fiber transmittance as a function of the fiber lengthening L (right scale). Note the 95% final transmission (ie -0.22 dB insertion loss). The curve in solid squares is the observed decrease of the fiber waist w (left scale). Left inset: zoom on the transmittance curve over 100 μm for L = 20 mm and L = 30 mm. Right inset: zoom on the last amplitude drop.

Fig. 3.
Fig. 3.

Calculated effective index for the lowest modes of a cylindrical silica fiber, as a function of fiber radius. The thick solid and dashed lines are for HE1n and HE2n modes; the thin solid and dashed lines for the EH1n and EH2n modes, the thin dotted lines for the TE0n modes.

Fig. 4.
Fig. 4.

Transmittance curve and its short-time Fourier transform (window width is set to ~ 0.5 mm). The solid curves are the frequencies calculated from eq. (3) with h as single fit parameter. The vertical lines underline the coincidence of amplitude drop with mode cutoff.

Fig. 5.
Fig. 5.

Near-field intensity mappings recorded (1) at the taper center , (2) 1.25 mm before the hot zone and (3) 2.25 mm before the hot zone.

Tables (1)

Tables Icon

Table 1. Frequency analysis of Fig. 5

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r ( z , L ) = { r 0 exp ( z h ) for 0 < z < L 2 w r 0 exp ( L 2 h ) for L 2 < z < L + h 2
Φ 12 ( L ) = 2 { 0 L 2 Δ β 12 ( r ( z ) ) dz + Δ β 12 ( w ) h 2 } .
K 12 = d Φ 12 dL = Δ β 12 ( w ) w 2 d dr ( Δ β 12 ) | w .

Metrics