Abstract

We demonstrate a scheme for tunable shaping of a soliton spectrum. Specifically, we show a local enhancement of 6 dB in the pulse spectrum by propagating the pulse through a fiber containing micro-bends generated by a flexural acoustic wave - an acoustic long-period grating (LPG) - followed by nonlinear propagation through uniform fiber. The location of the enhancement peak can be tuned by external control of the acoustic frequency of the LPG. We discuss the potential application of this scheme to tunable supercontinuum sources.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Xu, D.H. Reitze, and R.S. Windeler, “Controlling nonlinear processes in microstructured fibers using shaped pulses”, Opt. Express 12, 4731–4741 (2004).
    [Crossref] [PubMed]
  2. J. W. Nicholson, P. S. Westbrook, K. S. Feder, and A. D. Yablon, “Supercontinuum generation in ultraviolet-irradiated fibers,” Opt. Lett. 15, 2363–2365 (2004).
    [Crossref]
  3. P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85, 4600–4602 (2004).
    [Crossref]
  4. K. Kim, S. A. Diddams, P. S. Westbrook, J. W. Nicholson, and K. S. Feder, “Improved stabilization of a 1.3 μm femtosecond optical frequency comb by use of a spectrally tailored continuum from a nonlinear fiber grating,” Opt. Lett. 31, 277–279 (2006).
    [Crossref] [PubMed]
  5. I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of meters and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007).
    [Crossref]
  6. Y. Li, F. C. Salisbury, Z. Zhu, T. G. Brown, P. S. Westbrook, K. S. Feder, and R. S. Windeler, “Interaction of supercontinuum and Raman solitons with microstructure fiber gratings,” Opt. Express 13, 998–1007 (2005).
    [Crossref] [PubMed]
  7. D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M. de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett. 32, 1644–1646 (2007).
    [Crossref] [PubMed]
  8. H.S. Kim, S.H. Yun, I.K. Kwang, and B.Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22, 1476–1478 (1997).
    [Crossref]
  9. D. R. Austin, J. A. Bolger, C. M. de Sterke, B. J. Eggleton, and T.G. Brown, “Narrowband supercontinuum control using phase shaping,” Opt. Express 14, 13142–13150 (2006).
    [Crossref] [PubMed]
  10. A. Praekelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, “Filling a spectral hole via self-phase modulation,” Appl. Phys. Lett. 87, 121113–121115 (2005).
    [Crossref]
  11. D.R. Austin, J. A. Bolger, C. M. de Sterke, D.-I. Yeom, T. G. Brown, and B. J. Eggleton, “Narrow-band spectral enhancement of a self-phase modulated pulse,” paper JTuB4 in Conference on Lasers and Electro-optics (CLEO), Baltimore, May 2007.
  12. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, San Diego, 1995).
  13. J.K. Lucek and K.J. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992).
    [Crossref] [PubMed]
  14. J.N. Kutz, B.J. Eggleton, J.B. Stark, and R.E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electronics 3, 31232–31245 (1997).
  15. P. S. Westbrook and J. W. Nicholson, “Perturbative approach to continuum generation in a fiber Bragg grating,” Opt. Express 14, 7610–7616 (2006).
    [Crossref] [PubMed]
  16. T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, “Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200 nm supercontinuum filtering”, Electron. Lett. 31, 1064–1066 (1995).
    [Crossref]

2007 (2)

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of meters and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007).
[Crossref]

D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M. de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett. 32, 1644–1646 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (2)

Y. Li, F. C. Salisbury, Z. Zhu, T. G. Brown, P. S. Westbrook, K. S. Feder, and R. S. Windeler, “Interaction of supercontinuum and Raman solitons with microstructure fiber gratings,” Opt. Express 13, 998–1007 (2005).
[Crossref] [PubMed]

A. Praekelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, “Filling a spectral hole via self-phase modulation,” Appl. Phys. Lett. 87, 121113–121115 (2005).
[Crossref]

2004 (3)

J. W. Nicholson, P. S. Westbrook, K. S. Feder, and A. D. Yablon, “Supercontinuum generation in ultraviolet-irradiated fibers,” Opt. Lett. 15, 2363–2365 (2004).
[Crossref]

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85, 4600–4602 (2004).
[Crossref]

S. Xu, D.H. Reitze, and R.S. Windeler, “Controlling nonlinear processes in microstructured fibers using shaped pulses”, Opt. Express 12, 4731–4741 (2004).
[Crossref] [PubMed]

1997 (2)

H.S. Kim, S.H. Yun, I.K. Kwang, and B.Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22, 1476–1478 (1997).
[Crossref]

J.N. Kutz, B.J. Eggleton, J.B. Stark, and R.E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electronics 3, 31232–31245 (1997).

1995 (1)

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, “Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200 nm supercontinuum filtering”, Electron. Lett. 31, 1064–1066 (1995).
[Crossref]

1992 (1)

J.K. Lucek and K.J. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992).
[Crossref] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, San Diego, 1995).

Assion, A.

A. Praekelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, “Filling a spectral hole via self-phase modulation,” Appl. Phys. Lett. 87, 121113–121115 (2005).
[Crossref]

Austin, D. R.

Austin, D.R.

D.R. Austin, J. A. Bolger, C. M. de Sterke, D.-I. Yeom, T. G. Brown, and B. J. Eggleton, “Narrow-band spectral enhancement of a self-phase modulated pulse,” paper JTuB4 in Conference on Lasers and Electro-optics (CLEO), Baltimore, May 2007.

Baumert, T.

A. Praekelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, “Filling a spectral hole via self-phase modulation,” Appl. Phys. Lett. 87, 121113–121115 (2005).
[Crossref]

Bergquist, J. C.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of meters and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007).
[Crossref]

Blow, K.J.

J.K. Lucek and K.J. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992).
[Crossref] [PubMed]

Bolger, J. A.

Brown, T.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85, 4600–4602 (2004).
[Crossref]

Brown, T. G.

Y. Li, F. C. Salisbury, Z. Zhu, T. G. Brown, P. S. Westbrook, K. S. Feder, and R. S. Windeler, “Interaction of supercontinuum and Raman solitons with microstructure fiber gratings,” Opt. Express 13, 998–1007 (2005).
[Crossref] [PubMed]

D.R. Austin, J. A. Bolger, C. M. de Sterke, D.-I. Yeom, T. G. Brown, and B. J. Eggleton, “Narrow-band spectral enhancement of a self-phase modulated pulse,” paper JTuB4 in Conference on Lasers and Electro-optics (CLEO), Baltimore, May 2007.

Brown, T.G.

Coddington, I.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of meters and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007).
[Crossref]

de Sterke, C. M.

Diddams, S. A.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of meters and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007).
[Crossref]

K. Kim, S. A. Diddams, P. S. Westbrook, J. W. Nicholson, and K. S. Feder, “Improved stabilization of a 1.3 μm femtosecond optical frequency comb by use of a spectrally tailored continuum from a nonlinear fiber grating,” Opt. Lett. 31, 277–279 (2006).
[Crossref] [PubMed]

Eggleton, B. J.

Eggleton, B.J.

J.N. Kutz, B.J. Eggleton, J.B. Stark, and R.E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electronics 3, 31232–31245 (1997).

Feder, K. S.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of meters and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007).
[Crossref]

K. Kim, S. A. Diddams, P. S. Westbrook, J. W. Nicholson, and K. S. Feder, “Improved stabilization of a 1.3 μm femtosecond optical frequency comb by use of a spectrally tailored continuum from a nonlinear fiber grating,” Opt. Lett. 31, 277–279 (2006).
[Crossref] [PubMed]

Y. Li, F. C. Salisbury, Z. Zhu, T. G. Brown, P. S. Westbrook, K. S. Feder, and R. S. Windeler, “Interaction of supercontinuum and Raman solitons with microstructure fiber gratings,” Opt. Express 13, 998–1007 (2005).
[Crossref] [PubMed]

J. W. Nicholson, P. S. Westbrook, K. S. Feder, and A. D. Yablon, “Supercontinuum generation in ultraviolet-irradiated fibers,” Opt. Lett. 15, 2363–2365 (2004).
[Crossref]

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85, 4600–4602 (2004).
[Crossref]

Kawanishi, S.

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, “Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200 nm supercontinuum filtering”, Electron. Lett. 31, 1064–1066 (1995).
[Crossref]

Kim, B.Y.

Kim, H.S.

Kim, K.

Kuhlmey, B. T.

Kutz, J.N.

J.N. Kutz, B.J. Eggleton, J.B. Stark, and R.E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electronics 3, 31232–31245 (1997).

Kwang, I.K.

Le Coq, Y.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of meters and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007).
[Crossref]

Li, Y.

Lorini, L.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of meters and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007).
[Crossref]

Lucek, J.K.

J.K. Lucek and K.J. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992).
[Crossref] [PubMed]

Marshall, G. D.

Morioka, T.

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, “Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200 nm supercontinuum filtering”, Electron. Lett. 31, 1064–1066 (1995).
[Crossref]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of meters and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007).
[Crossref]

Nicholson, J. W.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of meters and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007).
[Crossref]

K. Kim, S. A. Diddams, P. S. Westbrook, J. W. Nicholson, and K. S. Feder, “Improved stabilization of a 1.3 μm femtosecond optical frequency comb by use of a spectrally tailored continuum from a nonlinear fiber grating,” Opt. Lett. 31, 277–279 (2006).
[Crossref] [PubMed]

P. S. Westbrook and J. W. Nicholson, “Perturbative approach to continuum generation in a fiber Bragg grating,” Opt. Express 14, 7610–7616 (2006).
[Crossref] [PubMed]

J. W. Nicholson, P. S. Westbrook, K. S. Feder, and A. D. Yablon, “Supercontinuum generation in ultraviolet-irradiated fibers,” Opt. Lett. 15, 2363–2365 (2004).
[Crossref]

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85, 4600–4602 (2004).
[Crossref]

Oates, C. W.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of meters and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007).
[Crossref]

Praekelt, A.

A. Praekelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, “Filling a spectral hole via self-phase modulation,” Appl. Phys. Lett. 87, 121113–121115 (2005).
[Crossref]

Quraishi, Q.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of meters and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007).
[Crossref]

Reitze, D.H.

Salisbury, F. C.

Sarpe-Tudoran, C.

A. Praekelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, “Filling a spectral hole via self-phase modulation,” Appl. Phys. Lett. 87, 121113–121115 (2005).
[Crossref]

Saruwatari, M.

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, “Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200 nm supercontinuum filtering”, Electron. Lett. 31, 1064–1066 (1995).
[Crossref]

Slusher, R.E.

J.N. Kutz, B.J. Eggleton, J.B. Stark, and R.E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electronics 3, 31232–31245 (1997).

Stark, J.B.

J.N. Kutz, B.J. Eggleton, J.B. Stark, and R.E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electronics 3, 31232–31245 (1997).

Suzuki, S.

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, “Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200 nm supercontinuum filtering”, Electron. Lett. 31, 1064–1066 (1995).
[Crossref]

Swann, W. C.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of meters and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007).
[Crossref]

Uchiyama, K.

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, “Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200 nm supercontinuum filtering”, Electron. Lett. 31, 1064–1066 (1995).
[Crossref]

Westbrook, P. S.

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of meters and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007).
[Crossref]

P. S. Westbrook and J. W. Nicholson, “Perturbative approach to continuum generation in a fiber Bragg grating,” Opt. Express 14, 7610–7616 (2006).
[Crossref] [PubMed]

K. Kim, S. A. Diddams, P. S. Westbrook, J. W. Nicholson, and K. S. Feder, “Improved stabilization of a 1.3 μm femtosecond optical frequency comb by use of a spectrally tailored continuum from a nonlinear fiber grating,” Opt. Lett. 31, 277–279 (2006).
[Crossref] [PubMed]

Y. Li, F. C. Salisbury, Z. Zhu, T. G. Brown, P. S. Westbrook, K. S. Feder, and R. S. Windeler, “Interaction of supercontinuum and Raman solitons with microstructure fiber gratings,” Opt. Express 13, 998–1007 (2005).
[Crossref] [PubMed]

J. W. Nicholson, P. S. Westbrook, K. S. Feder, and A. D. Yablon, “Supercontinuum generation in ultraviolet-irradiated fibers,” Opt. Lett. 15, 2363–2365 (2004).
[Crossref]

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85, 4600–4602 (2004).
[Crossref]

Windeler, R. S.

Windeler, R.S.

Withford, M. J.

Wollenhaupt, M.

A. Praekelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, “Filling a spectral hole via self-phase modulation,” Appl. Phys. Lett. 87, 121113–121115 (2005).
[Crossref]

Xu, S.

Yablon, A. D.

J. W. Nicholson, P. S. Westbrook, K. S. Feder, and A. D. Yablon, “Supercontinuum generation in ultraviolet-irradiated fibers,” Opt. Lett. 15, 2363–2365 (2004).
[Crossref]

Yeom, D.-I.

D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M. de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett. 32, 1644–1646 (2007).
[Crossref] [PubMed]

D.R. Austin, J. A. Bolger, C. M. de Sterke, D.-I. Yeom, T. G. Brown, and B. J. Eggleton, “Narrow-band spectral enhancement of a self-phase modulated pulse,” paper JTuB4 in Conference on Lasers and Electro-optics (CLEO), Baltimore, May 2007.

Yun, S.H.

Zhu, Z.

Appl. Phys. Lett. (2)

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85, 4600–4602 (2004).
[Crossref]

A. Praekelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, “Filling a spectral hole via self-phase modulation,” Appl. Phys. Lett. 87, 121113–121115 (2005).
[Crossref]

Electron. Lett. (1)

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, “Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200 nm supercontinuum filtering”, Electron. Lett. 31, 1064–1066 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electronics (1)

J.N. Kutz, B.J. Eggleton, J.B. Stark, and R.E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electronics 3, 31232–31245 (1997).

Nature Photonics (1)

I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of meters and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. A (1)

J.K. Lucek and K.J. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992).
[Crossref] [PubMed]

Other (2)

D.R. Austin, J. A. Bolger, C. M. de Sterke, D.-I. Yeom, T. G. Brown, and B. J. Eggleton, “Narrow-band spectral enhancement of a self-phase modulated pulse,” paper JTuB4 in Conference on Lasers and Electro-optics (CLEO), Baltimore, May 2007.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, San Diego, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) A pulse modified by either a phase or an amplitude filter can be represented as a superposition of pulses with different initial phases. (b). A pulse propagating in uniform fiber encounters an LPG, which imposes the filter response indicated in (c), where the filter transmission is indicated as a blue curve, and the phase is indicated as a dashed red curve. During further propagation the phase and loss response transform the pulse spectrum. The diagrams in (d) are slices through the spectral intensity of the pulse at various stages during propagation, showing a distinctive periodic spectral profile (one period is illustrated).

Fig. 2.
Fig. 2.

Experimental layout: SMF = single mode fiber; LPG=long-period grating; OSA=optical spectrum analyzer.

Fig. 3.
Fig. 3.

Spectra at output of 7 m of fiber (a) when power is attenuated before LPG; (b) with no LPG present (red dashed curve); and when high laser power passes through LPG (black solid curve). (c) Simulated spectral response directly after the LPG; (d) Result of simulation showing spectrum of pulse after propagation through a LPG and 7 m of SMF fiber.

Fig 4.
Fig 4.

Evolution of LPG enhancement along fiber length for LPG at 1618 nm. (a) Experimental data showing spectral evolution. Top: colour surface plot, bottom: spectral slices at positions as marked. (b) Simulated evolution of spectrum. Top: colour surface plot, bottom: spectral slices at positions as marked.

Fig. 5.
Fig. 5.

Measured spectra, plotted on linear scale, at output of 2 m of fiber after LPG as RF frequency is varied, as marked on individual curves: (a) at low power (wave is attenuated before LPG); (b) At high power. The grey curve in each figure shows the spectrum with no RF power applied.

Metrics