Abstract

We demonstrate optical burst add-drop multiplexing as a practical application of the optical burst switching technology in a wavelength-division-multiplexed ring network. To control optical bursts in the network, a burst identifier (BI) for delivering control information, and a BI processor for handling the BI, were designed. Optical bursts of 10- to 100-μs in length were optically multiplexed or demultiplexed in an intermediate node of the ring network. The demonstration shows that the optical burst add-drop multiplexing technique provides sub-wavelength granularity to a ring network.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Tomsu and C. Schmutzer, Next Generation Optical Networks, (Prentice-Hall, NJ, 2002).
  2. T. Battestilli and H. Perros, "An Introduction to Optical Burst Switching," IEEE Communications Mag. 41, S10-S15 (2003).
    [CrossRef]
  3. D. K. Hunter and I. Andonovic, "Approaches to Optical Internet Packet Switching," IEEE Communications Mag. 38, 116-122 (2000).
    [CrossRef]
  4. J. Bowers, E. Burmeister, and D. Blumenthal, "Optical Buffering and Switching for Optical Packet Switching," in Proceedings of International Conference on Photonics in Switching, (Institute of Electrical and Electronics Engineers, New York, 2006), pp. 203-205.
  5. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, M. Hill, J. van Zantvoort, F. Huijskens, H. de Waardt, M. Smit, A. Koonen, G. Khoe, and H. Dorren, "Ultrafast all-optical signal processing: toward optical packet switching," Proc. SPIE 6353, 635312-1-635312-12 (2006).
  6. Y. Chen and J. S. Turner, "WDM burst switching for petabit capacity routers," in Proceedings of IEEE Military Communications Conference (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 968-973.
  7. M. Yoo and C. Qiao, "A novel switching paradigm for buffer-less WDM networks," in Proceedings of IEEE Optical Fiber Communication Conference / International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 177-179.
  8. C. Qiao, "Labeled Optical Burst Switching for IP-over-WDM Integration," IEEE Communications Mag. 38, 104-114 (2000).
    [CrossRef]
  9. L. Xu, H. G. Perros, and G. N. Rouskas, "A simulation study of optical burst switching and access protocols for WDM ring networks," Computer Networks 41, 143-160 (2003).
    [CrossRef]
  10. A. Fumagalli and P. Krishnamoorthy, "A Low-Latency and Bandwidth-Efficient Distributed Optical Burst Switching Architecture for Metro Ring," in Conference Records of IEEE International Conference on Communications (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 1340-1344.
  11. A. Zapata, I. de Miguel, M. Duser, J. Spencer, P. Bayvel, D. Breuer, N. Hanik, and A. Gladisch, "Performance Comparison of Static and Dynamic Optical Metro Ring Network Architectures," in Proceedings of European Conference on Optical Communication (Institution of Electrical Engineers, London, 2003), pp. 374-375.
  12. M. Zirngibl, "Gain control in erbium-doped fiber amplifiers by and all-optical feedback loop," Electron. Lett. 27, 560-561 (1991).
    [CrossRef]
  13. M. Karásek, A. Bononi, L. A. Rusch, and M. Menif, "Gain Stabilization in Gain Clamped EDFA Cascades Fed by WDM Burst-Mode Packet Traffic," J. Lightwave Technol. 18, 308-313 (2000).
    [CrossRef]
  14. B. Feng, N. Stol, E. Zouganeli, R. Ø. Andreassen, A. Solem, R. B. Haugen, A. Sudbø, and B. E. Helvik, "Direct comparison between optical circuit and optical packet/burst switching using simulations," in Proceedings of Optoelectronics and Communications Conference / Conference on Optical Internet (Institute of Electronics, Information and Communication Engineers, Japan, 2004), pp. 394-395.
  15. H. Jeong, J. Cho, M. Kang, H. Park, J. Choi, and Y. Won, "GMPLS over OBS Architecture for an Optical Packet Internet," in Proceedings of Conference on Optical Internet - Photonics in Switching (Korean Institute of Communication Sciences, Seoul, 2002), pp. 84-86.
  16. J. K. Choi and Y. W. Cha, "Network management in the GSMP open interface," in Proceedings of Conference on Optical Internet - Photonics in Switching (Korean Institute of Communication Sciences, Seoul, 2002), pp. 203-205.

2003

T. Battestilli and H. Perros, "An Introduction to Optical Burst Switching," IEEE Communications Mag. 41, S10-S15 (2003).
[CrossRef]

L. Xu, H. G. Perros, and G. N. Rouskas, "A simulation study of optical burst switching and access protocols for WDM ring networks," Computer Networks 41, 143-160 (2003).
[CrossRef]

2000

D. K. Hunter and I. Andonovic, "Approaches to Optical Internet Packet Switching," IEEE Communications Mag. 38, 116-122 (2000).
[CrossRef]

C. Qiao, "Labeled Optical Burst Switching for IP-over-WDM Integration," IEEE Communications Mag. 38, 104-114 (2000).
[CrossRef]

M. Karásek, A. Bononi, L. A. Rusch, and M. Menif, "Gain Stabilization in Gain Clamped EDFA Cascades Fed by WDM Burst-Mode Packet Traffic," J. Lightwave Technol. 18, 308-313 (2000).
[CrossRef]

1991

M. Zirngibl, "Gain control in erbium-doped fiber amplifiers by and all-optical feedback loop," Electron. Lett. 27, 560-561 (1991).
[CrossRef]

Andonovic, I.

D. K. Hunter and I. Andonovic, "Approaches to Optical Internet Packet Switching," IEEE Communications Mag. 38, 116-122 (2000).
[CrossRef]

Battestilli, T.

T. Battestilli and H. Perros, "An Introduction to Optical Burst Switching," IEEE Communications Mag. 41, S10-S15 (2003).
[CrossRef]

Bononi, A.

Hunter, D. K.

D. K. Hunter and I. Andonovic, "Approaches to Optical Internet Packet Switching," IEEE Communications Mag. 38, 116-122 (2000).
[CrossRef]

Karásek, M.

Menif, M.

Perros, H.

T. Battestilli and H. Perros, "An Introduction to Optical Burst Switching," IEEE Communications Mag. 41, S10-S15 (2003).
[CrossRef]

Perros, H. G.

L. Xu, H. G. Perros, and G. N. Rouskas, "A simulation study of optical burst switching and access protocols for WDM ring networks," Computer Networks 41, 143-160 (2003).
[CrossRef]

Qiao, C.

C. Qiao, "Labeled Optical Burst Switching for IP-over-WDM Integration," IEEE Communications Mag. 38, 104-114 (2000).
[CrossRef]

Rouskas, G. N.

L. Xu, H. G. Perros, and G. N. Rouskas, "A simulation study of optical burst switching and access protocols for WDM ring networks," Computer Networks 41, 143-160 (2003).
[CrossRef]

Rusch, L. A.

Xu, L.

L. Xu, H. G. Perros, and G. N. Rouskas, "A simulation study of optical burst switching and access protocols for WDM ring networks," Computer Networks 41, 143-160 (2003).
[CrossRef]

Zirngibl, M.

M. Zirngibl, "Gain control in erbium-doped fiber amplifiers by and all-optical feedback loop," Electron. Lett. 27, 560-561 (1991).
[CrossRef]

Computer Networks

L. Xu, H. G. Perros, and G. N. Rouskas, "A simulation study of optical burst switching and access protocols for WDM ring networks," Computer Networks 41, 143-160 (2003).
[CrossRef]

Electron. Lett.

M. Zirngibl, "Gain control in erbium-doped fiber amplifiers by and all-optical feedback loop," Electron. Lett. 27, 560-561 (1991).
[CrossRef]

IEEE Communications Mag.

C. Qiao, "Labeled Optical Burst Switching for IP-over-WDM Integration," IEEE Communications Mag. 38, 104-114 (2000).
[CrossRef]

T. Battestilli and H. Perros, "An Introduction to Optical Burst Switching," IEEE Communications Mag. 41, S10-S15 (2003).
[CrossRef]

D. K. Hunter and I. Andonovic, "Approaches to Optical Internet Packet Switching," IEEE Communications Mag. 38, 116-122 (2000).
[CrossRef]

J. Lightwave Technol.

Other

B. Feng, N. Stol, E. Zouganeli, R. Ø. Andreassen, A. Solem, R. B. Haugen, A. Sudbø, and B. E. Helvik, "Direct comparison between optical circuit and optical packet/burst switching using simulations," in Proceedings of Optoelectronics and Communications Conference / Conference on Optical Internet (Institute of Electronics, Information and Communication Engineers, Japan, 2004), pp. 394-395.

H. Jeong, J. Cho, M. Kang, H. Park, J. Choi, and Y. Won, "GMPLS over OBS Architecture for an Optical Packet Internet," in Proceedings of Conference on Optical Internet - Photonics in Switching (Korean Institute of Communication Sciences, Seoul, 2002), pp. 84-86.

J. K. Choi and Y. W. Cha, "Network management in the GSMP open interface," in Proceedings of Conference on Optical Internet - Photonics in Switching (Korean Institute of Communication Sciences, Seoul, 2002), pp. 203-205.

J. Bowers, E. Burmeister, and D. Blumenthal, "Optical Buffering and Switching for Optical Packet Switching," in Proceedings of International Conference on Photonics in Switching, (Institute of Electrical and Electronics Engineers, New York, 2006), pp. 203-205.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, M. Hill, J. van Zantvoort, F. Huijskens, H. de Waardt, M. Smit, A. Koonen, G. Khoe, and H. Dorren, "Ultrafast all-optical signal processing: toward optical packet switching," Proc. SPIE 6353, 635312-1-635312-12 (2006).

Y. Chen and J. S. Turner, "WDM burst switching for petabit capacity routers," in Proceedings of IEEE Military Communications Conference (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 968-973.

M. Yoo and C. Qiao, "A novel switching paradigm for buffer-less WDM networks," in Proceedings of IEEE Optical Fiber Communication Conference / International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 177-179.

P. Tomsu and C. Schmutzer, Next Generation Optical Networks, (Prentice-Hall, NJ, 2002).

A. Fumagalli and P. Krishnamoorthy, "A Low-Latency and Bandwidth-Efficient Distributed Optical Burst Switching Architecture for Metro Ring," in Conference Records of IEEE International Conference on Communications (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 1340-1344.

A. Zapata, I. de Miguel, M. Duser, J. Spencer, P. Bayvel, D. Breuer, N. Hanik, and A. Gladisch, "Performance Comparison of Static and Dynamic Optical Metro Ring Network Architectures," in Proceedings of European Conference on Optical Communication (Institution of Electrical Engineers, London, 2003), pp. 374-375.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

BI-based burst data transmission: (a) A structure of the BI. (b) BI transmission in continuous mode (lower) and a BI location indicator (upper). The BI indicator helps to find a meaningful BI among dummy BIs. The inset shows a fine view of the waveform of a 14-byte BI packet. (c) Measured electrical signals for BI indicators (top), laser diode-control signal (middle), and optical signal of an output OB channel (bottom). The BI indicator is used to measure the offset time between a BI and an OB.

Fig. 2.
Fig. 2.

Reduction of the transient and surge by (a) close allocation of an ASE feedback channel to an OB channel and (b) an increase of BI channel power.

Fig. 3.
Fig. 3.

A schematic diagram and photo of the OB-ADM testbed. Where, MOD: external intensity modulator, DCF: dispersion compensating fiber (DCF), SMF: single-mode fiber, Mux: optical multiplexer, Demux: optical demultiplexer, SW: electro-optic switch, OB-tTx: tunable transmitter, and BER tester: bit-error-rate tester.

Fig. 4.
Fig. 4.

Implemented OB-ADM functions. (a) Input optical OBs, (b) dropped OBs, (c) added OBs, (d) outputs from the ADM node.

Fig. 5.
Fig. 5.

Spectra for (a) AGC operation at the booster amplifier of node A, (b) the received BI, (c) dropped λ1 channel, and (d) added λ1 channel in node B.

Fig. 6.
Fig. 6.

BER curves and eye diagrams for (a) A to B node, (b) B to C node, and (c) A to C node transmission in continuous mode and burst mode.

Tables (2)

Tables Icon

Table 1. Selected Parameters in the BI

Tables Icon

Table 2. Design Specifications of the OB-ADM Testbed

Metrics