Abstract

We report near field imaging of the transverse lasing modes of quantum cascade lasers. A mid-infrared apertureless near-field scanning optical microscope was used to characterize the modes on the laser facet. A very stable mode pattern corresponding to a TM00 mode was observed as function of increasing driving current for a narrow active region quantum cascade laser. Higher order modes were observed for devices with a larger active region width-to-wavelength ratio operated in pulsed mode close to threshold. A theoretical model is proposed to explain why specific transverse modes are preferred close to threshold. The model is in good agreement with the experimental results.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, "Defining, measuring, and optimizing laser beam quality," Proc. SPIE. 1868, 2-12 (1993).
  2. E. Betzig and J. K. Trautmann, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
    [CrossRef] [PubMed]
  3. S. K. Buratto, J. W. P. Hsu, J. K. Trautman, E. Betzig, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, "Imaging InGaAsP quantum-well lasers using near-field scanning optical microscopy," J. Appl. Phys. 76, 7720-7725 (1994).
    [CrossRef]
  4. U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers," Appl. Phys. Lett. 68, 2337-2339 (1996).
    [CrossRef]
  5. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
    [CrossRef]
  6. A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, "Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of λ/600," Opt. Lett. 21, 1315-1317 (1996).
    [CrossRef] [PubMed]
  7. G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J.: Appl. Phys. 5, 269-275 (1999).
    [CrossRef]
  8. V. Moreau, M. Bahriz, R. Colombelli, P. Lemoine, Y. D. Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
    [CrossRef]
  9. B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
    [CrossRef]
  10. T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004).
    [CrossRef]
  11. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," Nano Lett. 6, 1307-1310 (2006).
    [CrossRef] [PubMed]
  12. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lonèar, M. Troccoli, and F. Capasso, "High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 081101 (2006).
    [CrossRef]
  13. M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Höfler, and F. Capasso, "Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy," Electron. Lett. 41, 1059-1060 (2005).
    [CrossRef]
  14. The complex refractive index of the active region is calculated by taking the weighted average of the complex refractive indexes of the two constituent materials (AlInAs and InGaAs). This is a good approximation because the wavelength in the laser material is significantly larger than the thickness of each individual material layer (typically 1~4 nm).
  15. J. Guthrie, G. L. Tan, M. Ohkubo, T. Fukushima, Y. Ikegami, T. Ijichi, M. Irikawa, R. S. Mand, and J. M. Xu, "Beam instability in 980-nm power lasers: experiment and analysis," IEEE Photon. Technol. Lett. 6, 1409-1411 (1994).
    [CrossRef]
  16. M. F. C. Schemmann, C. J. van der Poel, B. A. H. van Bakel, H. P. M. M. Ambrosius, A. Valster, J. A. M. van den Heijkant, and G. A. Acket, "Kink power in weakly index guided semiconductor lasers," Appl. Phys. Lett. 66, 920-922 (1995).
    [CrossRef]
  17. G. L. Tan, R. S. Mand, and J. M. Xu, "Self-consistent modeling of beam instabilities in 980-nm fiber pump lasers," IEEE J. Quantum Electron. 33, 1384-1395 (1997).
    [CrossRef]
  18. W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "Beam steering in high-power CW quantum-cascade lasers," IEEE J. Quantum Electron. 41, 833-841 (2005).
    [CrossRef]

2007

V. Moreau, M. Bahriz, R. Colombelli, P. Lemoine, Y. D. Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

2006

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," Nano Lett. 6, 1307-1310 (2006).
[CrossRef] [PubMed]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lonèar, M. Troccoli, and F. Capasso, "High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 081101 (2006).
[CrossRef]

2005

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Höfler, and F. Capasso, "Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy," Electron. Lett. 41, 1059-1060 (2005).
[CrossRef]

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "Beam steering in high-power CW quantum-cascade lasers," IEEE J. Quantum Electron. 41, 833-841 (2005).
[CrossRef]

2004

T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004).
[CrossRef]

2000

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

1999

G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J.: Appl. Phys. 5, 269-275 (1999).
[CrossRef]

1997

G. L. Tan, R. S. Mand, and J. M. Xu, "Self-consistent modeling of beam instabilities in 980-nm fiber pump lasers," IEEE J. Quantum Electron. 33, 1384-1395 (1997).
[CrossRef]

1996

A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, "Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of λ/600," Opt. Lett. 21, 1315-1317 (1996).
[CrossRef] [PubMed]

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers," Appl. Phys. Lett. 68, 2337-2339 (1996).
[CrossRef]

1995

M. F. C. Schemmann, C. J. van der Poel, B. A. H. van Bakel, H. P. M. M. Ambrosius, A. Valster, J. A. M. van den Heijkant, and G. A. Acket, "Kink power in weakly index guided semiconductor lasers," Appl. Phys. Lett. 66, 920-922 (1995).
[CrossRef]

1994

J. Guthrie, G. L. Tan, M. Ohkubo, T. Fukushima, Y. Ikegami, T. Ijichi, M. Irikawa, R. S. Mand, and J. M. Xu, "Beam instability in 980-nm power lasers: experiment and analysis," IEEE Photon. Technol. Lett. 6, 1409-1411 (1994).
[CrossRef]

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

S. K. Buratto, J. W. P. Hsu, J. K. Trautman, E. Betzig, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, "Imaging InGaAsP quantum-well lasers using near-field scanning optical microscopy," J. Appl. Phys. 76, 7720-7725 (1994).
[CrossRef]

1993

A. E. Siegman, "Defining, measuring, and optimizing laser beam quality," Proc. SPIE. 1868, 2-12 (1993).

1992

E. Betzig and J. K. Trautmann, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

Acket, G. A.

M. F. C. Schemmann, C. J. van der Poel, B. A. H. van Bakel, H. P. M. M. Ambrosius, A. Valster, J. A. M. van den Heijkant, and G. A. Acket, "Kink power in weakly index guided semiconductor lasers," Appl. Phys. Lett. 66, 920-922 (1995).
[CrossRef]

Ambrosius, H. P. M. M.

M. F. C. Schemmann, C. J. van der Poel, B. A. H. van Bakel, H. P. M. M. Ambrosius, A. Valster, J. A. M. van den Heijkant, and G. A. Acket, "Kink power in weakly index guided semiconductor lasers," Appl. Phys. Lett. 66, 920-922 (1995).
[CrossRef]

Assayag, O.

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Höfler, and F. Capasso, "Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy," Electron. Lett. 41, 1059-1060 (2005).
[CrossRef]

Bachelot, R.

G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J.: Appl. Phys. 5, 269-275 (1999).
[CrossRef]

A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, "Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of λ/600," Opt. Lett. 21, 1315-1317 (1996).
[CrossRef] [PubMed]

Bahr, C. C.

S. K. Buratto, J. W. P. Hsu, J. K. Trautman, E. Betzig, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, "Imaging InGaAsP quantum-well lasers using near-field scanning optical microscopy," J. Appl. Phys. 76, 7720-7725 (1994).
[CrossRef]

Bahriz, M.

V. Moreau, M. Bahriz, R. Colombelli, P. Lemoine, Y. D. Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

Ben-Ami, N.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers," Appl. Phys. Lett. 68, 2337-2339 (1996).
[CrossRef]

Ben-Ami, U.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers," Appl. Phys. Lett. 68, 2337-2339 (1996).
[CrossRef]

Betzig, E.

S. K. Buratto, J. W. P. Hsu, J. K. Trautman, E. Betzig, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, "Imaging InGaAsP quantum-well lasers using near-field scanning optical microscopy," J. Appl. Phys. 76, 7720-7725 (1994).
[CrossRef]

E. Betzig and J. K. Trautmann, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

Bewley, W. W.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "Beam steering in high-power CW quantum-cascade lasers," IEEE J. Quantum Electron. 41, 833-841 (2005).
[CrossRef]

Boccara, A. C.

Bour, D.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lonèar, M. Troccoli, and F. Capasso, "High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 081101 (2006).
[CrossRef]

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Höfler, and F. Capasso, "Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy," Electron. Lett. 41, 1059-1060 (2005).
[CrossRef]

Brehm, M.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," Nano Lett. 6, 1307-1310 (2006).
[CrossRef] [PubMed]

Buratto, S. K.

S. K. Buratto, J. W. P. Hsu, J. K. Trautman, E. Betzig, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, "Imaging InGaAsP quantum-well lasers using near-field scanning optical microscopy," J. Appl. Phys. 76, 7720-7725 (1994).
[CrossRef]

Bylsma, R. B.

S. K. Buratto, J. W. P. Hsu, J. K. Trautman, E. Betzig, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, "Imaging InGaAsP quantum-well lasers using near-field scanning optical microscopy," J. Appl. Phys. 76, 7720-7725 (1994).
[CrossRef]

Capasso, F.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lonèar, M. Troccoli, and F. Capasso, "High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 081101 (2006).
[CrossRef]

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Höfler, and F. Capasso, "Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy," Electron. Lett. 41, 1059-1060 (2005).
[CrossRef]

Cardillo, M. J.

S. K. Buratto, J. W. P. Hsu, J. K. Trautman, E. Betzig, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, "Imaging InGaAsP quantum-well lasers using near-field scanning optical microscopy," J. Appl. Phys. 76, 7720-7725 (1994).
[CrossRef]

Colombelli, R.

V. Moreau, M. Bahriz, R. Colombelli, P. Lemoine, Y. D. Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

Corzine, S.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lonèar, M. Troccoli, and F. Capasso, "High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 081101 (2006).
[CrossRef]

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Höfler, and F. Capasso, "Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy," Electron. Lett. 41, 1059-1060 (2005).
[CrossRef]

Diehl, L.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lonèar, M. Troccoli, and F. Capasso, "High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 081101 (2006).
[CrossRef]

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Höfler, and F. Capasso, "Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy," Electron. Lett. 41, 1059-1060 (2005).
[CrossRef]

Eisenstein, G.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers," Appl. Phys. Lett. 68, 2337-2339 (1996).
[CrossRef]

Evans, A. J.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "Beam steering in high-power CW quantum-cascade lasers," IEEE J. Quantum Electron. 41, 833-841 (2005).
[CrossRef]

Fish, G.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers," Appl. Phys. Lett. 68, 2337-2339 (1996).
[CrossRef]

Fukushima, T.

J. Guthrie, G. L. Tan, M. Ohkubo, T. Fukushima, Y. Ikegami, T. Ijichi, M. Irikawa, R. S. Mand, and J. M. Xu, "Beam instability in 980-nm power lasers: experiment and analysis," IEEE Photon. Technol. Lett. 6, 1409-1411 (1994).
[CrossRef]

Gleyzes, P.

Guthrie, J.

J. Guthrie, G. L. Tan, M. Ohkubo, T. Fukushima, Y. Ikegami, T. Ijichi, M. Irikawa, R. S. Mand, and J. M. Xu, "Beam instability in 980-nm power lasers: experiment and analysis," IEEE Photon. Technol. Lett. 6, 1409-1411 (1994).
[CrossRef]

Hillenbrand, R.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," Nano Lett. 6, 1307-1310 (2006).
[CrossRef] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004).
[CrossRef]

Höfler, G.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lonèar, M. Troccoli, and F. Capasso, "High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 081101 (2006).
[CrossRef]

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Höfler, and F. Capasso, "Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy," Electron. Lett. 41, 1059-1060 (2005).
[CrossRef]

Hsu, J. W. P.

S. K. Buratto, J. W. P. Hsu, J. K. Trautman, E. Betzig, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, "Imaging InGaAsP quantum-well lasers using near-field scanning optical microscopy," J. Appl. Phys. 76, 7720-7725 (1994).
[CrossRef]

Ijichi, T.

J. Guthrie, G. L. Tan, M. Ohkubo, T. Fukushima, Y. Ikegami, T. Ijichi, M. Irikawa, R. S. Mand, and J. M. Xu, "Beam instability in 980-nm power lasers: experiment and analysis," IEEE Photon. Technol. Lett. 6, 1409-1411 (1994).
[CrossRef]

Ikegami, Y.

J. Guthrie, G. L. Tan, M. Ohkubo, T. Fukushima, Y. Ikegami, T. Ijichi, M. Irikawa, R. S. Mand, and J. M. Xu, "Beam instability in 980-nm power lasers: experiment and analysis," IEEE Photon. Technol. Lett. 6, 1409-1411 (1994).
[CrossRef]

Irikawa, M.

J. Guthrie, G. L. Tan, M. Ohkubo, T. Fukushima, Y. Ikegami, T. Ijichi, M. Irikawa, R. S. Mand, and J. M. Xu, "Beam instability in 980-nm power lasers: experiment and analysis," IEEE Photon. Technol. Lett. 6, 1409-1411 (1994).
[CrossRef]

Keilmann, F.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," Nano Lett. 6, 1307-1310 (2006).
[CrossRef] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004).
[CrossRef]

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

Kim, C. S.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "Beam steering in high-power CW quantum-cascade lasers," IEEE J. Quantum Electron. 41, 833-841 (2005).
[CrossRef]

Knoll, B.

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

Krysa, A. B.

V. Moreau, M. Bahriz, R. Colombelli, P. Lemoine, Y. D. Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

Lahrech, A.

Lee, B. G.

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Höfler, and F. Capasso, "Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy," Electron. Lett. 41, 1059-1060 (2005).
[CrossRef]

Lemoine, P.

V. Moreau, M. Bahriz, R. Colombelli, P. Lemoine, Y. D. Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

Lewis, A.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers," Appl. Phys. Lett. 68, 2337-2339 (1996).
[CrossRef]

Lieberman, K.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers," Appl. Phys. Lett. 68, 2337-2339 (1996).
[CrossRef]

Lindle, J. R.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "Beam steering in high-power CW quantum-cascade lasers," IEEE J. Quantum Electron. 41, 833-841 (2005).
[CrossRef]

Lonèar, M.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lonèar, M. Troccoli, and F. Capasso, "High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 081101 (2006).
[CrossRef]

Mand, R. S.

G. L. Tan, R. S. Mand, and J. M. Xu, "Self-consistent modeling of beam instabilities in 980-nm fiber pump lasers," IEEE J. Quantum Electron. 33, 1384-1395 (1997).
[CrossRef]

J. Guthrie, G. L. Tan, M. Ohkubo, T. Fukushima, Y. Ikegami, T. Ijichi, M. Irikawa, R. S. Mand, and J. M. Xu, "Beam instability in 980-nm power lasers: experiment and analysis," IEEE Photon. Technol. Lett. 6, 1409-1411 (1994).
[CrossRef]

Meyer, J. R.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "Beam steering in high-power CW quantum-cascade lasers," IEEE J. Quantum Electron. 41, 833-841 (2005).
[CrossRef]

Møeller-Larsen, A.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers," Appl. Phys. Lett. 68, 2337-2339 (1996).
[CrossRef]

Moreau, V.

V. Moreau, M. Bahriz, R. Colombelli, P. Lemoine, Y. D. Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

Nagar, R.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers," Appl. Phys. Lett. 68, 2337-2339 (1996).
[CrossRef]

Nielsen, J. M.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers," Appl. Phys. Lett. 68, 2337-2339 (1996).
[CrossRef]

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

Ohkubo, M.

J. Guthrie, G. L. Tan, M. Ohkubo, T. Fukushima, Y. Ikegami, T. Ijichi, M. Irikawa, R. S. Mand, and J. M. Xu, "Beam instability in 980-nm power lasers: experiment and analysis," IEEE Photon. Technol. Lett. 6, 1409-1411 (1994).
[CrossRef]

Razeghi, M.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "Beam steering in high-power CW quantum-cascade lasers," IEEE J. Quantum Electron. 41, 833-841 (2005).
[CrossRef]

Royer, P.

G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J.: Appl. Phys. 5, 269-275 (1999).
[CrossRef]

Schemmann, M. F. C.

M. F. C. Schemmann, C. J. van der Poel, B. A. H. van Bakel, H. P. M. M. Ambrosius, A. Valster, J. A. M. van den Heijkant, and G. A. Acket, "Kink power in weakly index guided semiconductor lasers," Appl. Phys. Lett. 66, 920-922 (1995).
[CrossRef]

Siegman, A. E.

A. E. Siegman, "Defining, measuring, and optimizing laser beam quality," Proc. SPIE. 1868, 2-12 (1993).

Slivken, S.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "Beam steering in high-power CW quantum-cascade lasers," IEEE J. Quantum Electron. 41, 833-841 (2005).
[CrossRef]

Tan, G. L.

G. L. Tan, R. S. Mand, and J. M. Xu, "Self-consistent modeling of beam instabilities in 980-nm fiber pump lasers," IEEE J. Quantum Electron. 33, 1384-1395 (1997).
[CrossRef]

J. Guthrie, G. L. Tan, M. Ohkubo, T. Fukushima, Y. Ikegami, T. Ijichi, M. Irikawa, R. S. Mand, and J. M. Xu, "Beam instability in 980-nm power lasers: experiment and analysis," IEEE Photon. Technol. Lett. 6, 1409-1411 (1994).
[CrossRef]

Taubner, T.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," Nano Lett. 6, 1307-1310 (2006).
[CrossRef] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004).
[CrossRef]

Tessler, N.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers," Appl. Phys. Lett. 68, 2337-2339 (1996).
[CrossRef]

Trautman, J. K.

S. K. Buratto, J. W. P. Hsu, J. K. Trautman, E. Betzig, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, "Imaging InGaAsP quantum-well lasers using near-field scanning optical microscopy," J. Appl. Phys. 76, 7720-7725 (1994).
[CrossRef]

Trautmann, J. K.

E. Betzig and J. K. Trautmann, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

Troccoli, M.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lonèar, M. Troccoli, and F. Capasso, "High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 081101 (2006).
[CrossRef]

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Höfler, and F. Capasso, "Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy," Electron. Lett. 41, 1059-1060 (2005).
[CrossRef]

Valster, A.

M. F. C. Schemmann, C. J. van der Poel, B. A. H. van Bakel, H. P. M. M. Ambrosius, A. Valster, J. A. M. van den Heijkant, and G. A. Acket, "Kink power in weakly index guided semiconductor lasers," Appl. Phys. Lett. 66, 920-922 (1995).
[CrossRef]

van Bakel, B. A. H.

M. F. C. Schemmann, C. J. van der Poel, B. A. H. van Bakel, H. P. M. M. Ambrosius, A. Valster, J. A. M. van den Heijkant, and G. A. Acket, "Kink power in weakly index guided semiconductor lasers," Appl. Phys. Lett. 66, 920-922 (1995).
[CrossRef]

van den Heijkant, J. A. M.

M. F. C. Schemmann, C. J. van der Poel, B. A. H. van Bakel, H. P. M. M. Ambrosius, A. Valster, J. A. M. van den Heijkant, and G. A. Acket, "Kink power in weakly index guided semiconductor lasers," Appl. Phys. Lett. 66, 920-922 (1995).
[CrossRef]

van der Poel, C. J.

M. F. C. Schemmann, C. J. van der Poel, B. A. H. van Bakel, H. P. M. M. Ambrosius, A. Valster, J. A. M. van den Heijkant, and G. A. Acket, "Kink power in weakly index guided semiconductor lasers," Appl. Phys. Lett. 66, 920-922 (1995).
[CrossRef]

Vurgaftman, I.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "Beam steering in high-power CW quantum-cascade lasers," IEEE J. Quantum Electron. 41, 833-841 (2005).
[CrossRef]

Wickramasinghe, H. K.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

Wilde, Y. D.

V. Moreau, M. Bahriz, R. Colombelli, P. Lemoine, Y. D. Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

Wilson, L. R.

V. Moreau, M. Bahriz, R. Colombelli, P. Lemoine, Y. D. Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

Wurtz, G.

G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J.: Appl. Phys. 5, 269-275 (1999).
[CrossRef]

Xu, J. M.

G. L. Tan, R. S. Mand, and J. M. Xu, "Self-consistent modeling of beam instabilities in 980-nm fiber pump lasers," IEEE J. Quantum Electron. 33, 1384-1395 (1997).
[CrossRef]

J. Guthrie, G. L. Tan, M. Ohkubo, T. Fukushima, Y. Ikegami, T. Ijichi, M. Irikawa, R. S. Mand, and J. M. Xu, "Beam instability in 980-nm power lasers: experiment and analysis," IEEE Photon. Technol. Lett. 6, 1409-1411 (1994).
[CrossRef]

Yu, J. S.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "Beam steering in high-power CW quantum-cascade lasers," IEEE J. Quantum Electron. 41, 833-841 (2005).
[CrossRef]

Zenhausern, F.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

Zhu, J.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lonèar, M. Troccoli, and F. Capasso, "High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 081101 (2006).
[CrossRef]

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Höfler, and F. Capasso, "Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy," Electron. Lett. 41, 1059-1060 (2005).
[CrossRef]

Appl. Phys. Lett.

U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers," Appl. Phys. Lett. 68, 2337-2339 (1996).
[CrossRef]

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

V. Moreau, M. Bahriz, R. Colombelli, P. Lemoine, Y. D. Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004).
[CrossRef]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lonèar, M. Troccoli, and F. Capasso, "High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 081101 (2006).
[CrossRef]

M. F. C. Schemmann, C. J. van der Poel, B. A. H. van Bakel, H. P. M. M. Ambrosius, A. Valster, J. A. M. van den Heijkant, and G. A. Acket, "Kink power in weakly index guided semiconductor lasers," Appl. Phys. Lett. 66, 920-922 (1995).
[CrossRef]

Electron. Lett.

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Höfler, and F. Capasso, "Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy," Electron. Lett. 41, 1059-1060 (2005).
[CrossRef]

Eur. Phys. J.: Appl. Phys.

G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J.: Appl. Phys. 5, 269-275 (1999).
[CrossRef]

IEEE J. Quantum Electron.

G. L. Tan, R. S. Mand, and J. M. Xu, "Self-consistent modeling of beam instabilities in 980-nm fiber pump lasers," IEEE J. Quantum Electron. 33, 1384-1395 (1997).
[CrossRef]

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "Beam steering in high-power CW quantum-cascade lasers," IEEE J. Quantum Electron. 41, 833-841 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Guthrie, G. L. Tan, M. Ohkubo, T. Fukushima, Y. Ikegami, T. Ijichi, M. Irikawa, R. S. Mand, and J. M. Xu, "Beam instability in 980-nm power lasers: experiment and analysis," IEEE Photon. Technol. Lett. 6, 1409-1411 (1994).
[CrossRef]

J. Appl. Phys.

S. K. Buratto, J. W. P. Hsu, J. K. Trautman, E. Betzig, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, "Imaging InGaAsP quantum-well lasers using near-field scanning optical microscopy," J. Appl. Phys. 76, 7720-7725 (1994).
[CrossRef]

Nano Lett.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," Nano Lett. 6, 1307-1310 (2006).
[CrossRef] [PubMed]

Opt. Commun.

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

Opt. Lett.

Proc. SPIE.

A. E. Siegman, "Defining, measuring, and optimizing laser beam quality," Proc. SPIE. 1868, 2-12 (1993).

Science

E. Betzig and J. K. Trautmann, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

Other

The complex refractive index of the active region is calculated by taking the weighted average of the complex refractive indexes of the two constituent materials (AlInAs and InGaAs). This is a good approximation because the wavelength in the laser material is significantly larger than the thickness of each individual material layer (typically 1~4 nm).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

A sketch of the apertureless mid-ir near-field scanning optical microscope used to characterize transverse modes on the facet of quantum cascade lasers (QCLs). The detector records the interference signal between the radiation directly scattered into the far field by the apex of the AFM tip and the laser reflected from the mirror. Demodulation is performed at the second harmonic of the tapping frequency of the AFM tip in order to sufficiently suppress the contributions from the background light. Note that QCLs are TM polarized, i.e. the polarization of electric field is along y direction denoted in the figure. Thus the scattered near field would occur preferentially in the direction perpendicular to y. This is because the electric dipoles induced by the laser emission inside the AFM tip and the QCL material are polarized in the y direction. These dipoles radiate preferentially on the plane that is perpendicular to their axes. Accordingly, the lenses and detectors are placed along the x direction to maximize collection efficiency.

Fig 2.
Fig 2.

(a). Scanning electron microscope image of the facet of a λ=5.3μm quantum cascade laser (QCL) with an active region width ≈3 μm. The numbers in the image indicate: 1 active region, 2 InGaAs cladding layer, 3 InP cladding layer, 4 InP regrown region, 5 InP plasmon layer, 6 InP substrate, 7 gold top contact. (b) Measured light output vs. current (LI) curve of the QCL. The open circles on the curve indicate the working conditions under which images (c), (d), and (e) were taken. The LI curve was taken at room temperature in pulsed mode. (c), (d), and (e) Near-field 2fo images of the laser mode for a driving current of 300, 350, and 400 mA, respectively. The white dots in each near field image indicate the corners of the area comprising the active region and the InGaAs cladding layers. (f) The AFM topography taken simultaneously with (c). The size of the images (c)-(f): 5.3 μm×5.3 μm.

Fig. 3.
Fig. 3.

(a). Line scan of the mode profile normal to the quantum cascade laser layers of the λ=5.3μm device with a 3 μm wide active region. The scan is taken vertically along the center of Fig. 2(e) and is the average of ten traces. (b) Mode profile calculated using the COMSOL software. (c) Mode profile in (b) corrected for the effect of different scattering cross sections associated with the distribution of complex refractive indexes on the laser facet. The shaded regions correspond to two thin InGaAs cladding layers; between them is the active region and outside of them are the InP cladding layers. The three curves are shifted vertically for clarity.

Fig. 4.
Fig. 4.

Near field mode profile of three λ=7.0 μm quantum cascade lasers (QCLs) with wide active regions. (a) and (b) NSOM image and simulation of the TM01 mode of a QCL with a 12 μm wide active region. Image size: 18 μm×5.0 μm. (c) and (d) NSOM image and simulation of the TM02 mode of a QCL with a 17 μm wide active region. Image size: 20 μm×5.6 μm. (e) and (f) NSOM image and simulation of the TM04 mode of a QCL with a 22 μm wide active region. Image size: 25 μm×6.9 μm. Simulation results shown are the distribution of the magnitude of the electric field, which is polarized essentially perpendicular to the layers of the QCL material. The black lines in each simulated mode image indicate the edges of different regions. White dots in each NSOM image indicate the corners of the area comprising the active region and the InGaAs cladding layers.

Tables (1)

Tables Icon

Table 1. Calculations of the Mode Confinement factor, the Waveguide Loss, the Mirror Loss, and the Figure of Merit of Different Transverse Modes

Metrics