Abstract

We employ the numerically exact superposition T-matrix method to perform extensive computations of electromagnetic scattering by a volume of discrete random medium densely filled with increasingly absorbing as well as non-absorbing particles. Our numerical data demonstrate that increasing absorption diminishes and nearly extinguishes certain optical effects such as depolarization and coherent backscattering and increases the angular width of coherent backscattering patterns. This result corroborates the multiple-scattering origin of such effects and further demonstrates the heuristic value of the concept of multiple scattering even in application to densely packed particulate media.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Tseng, A. Taflove, D. Maitland, and V. Backman, "Pseudospectral time domain simulations of multiple light scattering in three-dimensional macroscopic random media," Radio Sci. 41, RS4009 (2006).
    [CrossRef]
  2. D. W. Mackowski, "Direct simulation of scattering and absorption by particle deposits," Proc. IMECE 2006, 14615 (2006).
  3. M. I. Mishchenko and L. Liu, "Weak localization of electromagnetic waves by densely packed many-particle groups: exact 3D results," J. Quant. Spectrosc. Radiat. Transfer 106, 616-621 (2007).
    [CrossRef]
  4. M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, and G. Videen, "Multiple scattering by random particulate media: exact 3D results," Opt. Express 15, 2822-2836 (2007).
    [CrossRef] [PubMed]
  5. A. Penttilä and K. Lumme, "Coherent backscattering effects with Discrete Dipole Approximation method," in Peer-Reviewed Abstracts of the Tenth Conference on Electromagnetic & Light Scattering, G. Videen, M. Mishchenko, M. P. Mengüç, and N. Zakharova, eds. (http://www.giss.nasa.gov/~crmim/, 2007), pp. 157-160.
  6. J. W. Hovenier, C. van der Mee, and H. Domke, Transfer of Polarized Light in Planetary Atmospheres - Basic Concepts and Practical Methods (Springer, Berlin, 2004).
  7. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge U. Press, Cambridge, UK, 2006).
  8. H. C. van de Hulst, Multiple Light Scattering. Tables, Formulas, and Applications (Academic Press, San Diego, 1980).
  9. S. Etemad, R. Thompson, M. J. Andrejco, S. John, and F. C. MacKintosh, "Weak localization of photons: termination of coherent random walks by absorption and confined geometry," Phys. Rev. Lett. 59, 1420-1423 (1987).
    [CrossRef] [PubMed]
  10. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, Cambridge, UK, 2002). http://www.giss.nasa.gov/~crmim/books.html.
  11. F. M. Kahnert, "Numerical methods in electromagnetic scattering theory," J. Quant. Spectrosc. Radiat. Transfer 79-80, 775-824 (2003).
    [CrossRef]
  12. D. W. Mackowski and M. I. Mishchenko, "Calculation of the T matrix and the scattering matrix for ensembles of spheres," J. Opt. Soc. Am. A 13, 2266-2278 (1996).
    [CrossRef]
  13. D. Mackowski, K. Fuller, and M. Mishchenko, "Codes for calculation of scattering by clusters of spheres." ftp://ftp.eng.auburn.edu/pub/dmckwski/scatcodes/index.html.
  14. Y. Kuga and A. Ishimaru, "Retroreflectance from a dense distribution of spherical particles," J. Opt. Soc. Am. A 1, 831-835 (1984).
    [CrossRef]
  15. L. Tsang and A. Ishimaru, "Backscattering enhancement of random discrete scatterers," J. Opt. Soc. Am. A 1, 836-839 (1984).
    [CrossRef]
  16. V. L. Kuz’min and V. P. Romanov, "Coherent phenomena in light scattering from disordered systems," Phys.-Uspekhi 39, 231-260 (1996).
    [CrossRef]

2007

M. I. Mishchenko and L. Liu, "Weak localization of electromagnetic waves by densely packed many-particle groups: exact 3D results," J. Quant. Spectrosc. Radiat. Transfer 106, 616-621 (2007).
[CrossRef]

M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, and G. Videen, "Multiple scattering by random particulate media: exact 3D results," Opt. Express 15, 2822-2836 (2007).
[CrossRef] [PubMed]

2006

S. H. Tseng, A. Taflove, D. Maitland, and V. Backman, "Pseudospectral time domain simulations of multiple light scattering in three-dimensional macroscopic random media," Radio Sci. 41, RS4009 (2006).
[CrossRef]

D. W. Mackowski, "Direct simulation of scattering and absorption by particle deposits," Proc. IMECE 2006, 14615 (2006).

2003

F. M. Kahnert, "Numerical methods in electromagnetic scattering theory," J. Quant. Spectrosc. Radiat. Transfer 79-80, 775-824 (2003).
[CrossRef]

1996

V. L. Kuz’min and V. P. Romanov, "Coherent phenomena in light scattering from disordered systems," Phys.-Uspekhi 39, 231-260 (1996).
[CrossRef]

D. W. Mackowski and M. I. Mishchenko, "Calculation of the T matrix and the scattering matrix for ensembles of spheres," J. Opt. Soc. Am. A 13, 2266-2278 (1996).
[CrossRef]

1987

S. Etemad, R. Thompson, M. J. Andrejco, S. John, and F. C. MacKintosh, "Weak localization of photons: termination of coherent random walks by absorption and confined geometry," Phys. Rev. Lett. 59, 1420-1423 (1987).
[CrossRef] [PubMed]

1984

Andrejco, M. J.

S. Etemad, R. Thompson, M. J. Andrejco, S. John, and F. C. MacKintosh, "Weak localization of photons: termination of coherent random walks by absorption and confined geometry," Phys. Rev. Lett. 59, 1420-1423 (1987).
[CrossRef] [PubMed]

Backman, V.

S. H. Tseng, A. Taflove, D. Maitland, and V. Backman, "Pseudospectral time domain simulations of multiple light scattering in three-dimensional macroscopic random media," Radio Sci. 41, RS4009 (2006).
[CrossRef]

Cairns, B.

Etemad, S.

S. Etemad, R. Thompson, M. J. Andrejco, S. John, and F. C. MacKintosh, "Weak localization of photons: termination of coherent random walks by absorption and confined geometry," Phys. Rev. Lett. 59, 1420-1423 (1987).
[CrossRef] [PubMed]

Ishimaru, A.

John, S.

S. Etemad, R. Thompson, M. J. Andrejco, S. John, and F. C. MacKintosh, "Weak localization of photons: termination of coherent random walks by absorption and confined geometry," Phys. Rev. Lett. 59, 1420-1423 (1987).
[CrossRef] [PubMed]

Kahnert, F. M.

F. M. Kahnert, "Numerical methods in electromagnetic scattering theory," J. Quant. Spectrosc. Radiat. Transfer 79-80, 775-824 (2003).
[CrossRef]

Kuga, Y.

Kuz’min, V. L.

V. L. Kuz’min and V. P. Romanov, "Coherent phenomena in light scattering from disordered systems," Phys.-Uspekhi 39, 231-260 (1996).
[CrossRef]

Liu, L.

M. I. Mishchenko and L. Liu, "Weak localization of electromagnetic waves by densely packed many-particle groups: exact 3D results," J. Quant. Spectrosc. Radiat. Transfer 106, 616-621 (2007).
[CrossRef]

M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, and G. Videen, "Multiple scattering by random particulate media: exact 3D results," Opt. Express 15, 2822-2836 (2007).
[CrossRef] [PubMed]

MacKintosh, F. C.

S. Etemad, R. Thompson, M. J. Andrejco, S. John, and F. C. MacKintosh, "Weak localization of photons: termination of coherent random walks by absorption and confined geometry," Phys. Rev. Lett. 59, 1420-1423 (1987).
[CrossRef] [PubMed]

Mackowski, D. W.

Maitland, D.

S. H. Tseng, A. Taflove, D. Maitland, and V. Backman, "Pseudospectral time domain simulations of multiple light scattering in three-dimensional macroscopic random media," Radio Sci. 41, RS4009 (2006).
[CrossRef]

Mishchenko, M. I.

Romanov, V. P.

V. L. Kuz’min and V. P. Romanov, "Coherent phenomena in light scattering from disordered systems," Phys.-Uspekhi 39, 231-260 (1996).
[CrossRef]

Taflove, A.

S. H. Tseng, A. Taflove, D. Maitland, and V. Backman, "Pseudospectral time domain simulations of multiple light scattering in three-dimensional macroscopic random media," Radio Sci. 41, RS4009 (2006).
[CrossRef]

Thompson, R.

S. Etemad, R. Thompson, M. J. Andrejco, S. John, and F. C. MacKintosh, "Weak localization of photons: termination of coherent random walks by absorption and confined geometry," Phys. Rev. Lett. 59, 1420-1423 (1987).
[CrossRef] [PubMed]

Tsang, L.

Tseng, S. H.

S. H. Tseng, A. Taflove, D. Maitland, and V. Backman, "Pseudospectral time domain simulations of multiple light scattering in three-dimensional macroscopic random media," Radio Sci. 41, RS4009 (2006).
[CrossRef]

Videen, G.

J. Opt. Soc. Am. A

J. Quant. Spectrosc. Radiat. Transfer

F. M. Kahnert, "Numerical methods in electromagnetic scattering theory," J. Quant. Spectrosc. Radiat. Transfer 79-80, 775-824 (2003).
[CrossRef]

M. I. Mishchenko and L. Liu, "Weak localization of electromagnetic waves by densely packed many-particle groups: exact 3D results," J. Quant. Spectrosc. Radiat. Transfer 106, 616-621 (2007).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

S. Etemad, R. Thompson, M. J. Andrejco, S. John, and F. C. MacKintosh, "Weak localization of photons: termination of coherent random walks by absorption and confined geometry," Phys. Rev. Lett. 59, 1420-1423 (1987).
[CrossRef] [PubMed]

Proc. IMECE

D. W. Mackowski, "Direct simulation of scattering and absorption by particle deposits," Proc. IMECE 2006, 14615 (2006).

Radio Sci.

S. H. Tseng, A. Taflove, D. Maitland, and V. Backman, "Pseudospectral time domain simulations of multiple light scattering in three-dimensional macroscopic random media," Radio Sci. 41, RS4009 (2006).
[CrossRef]

Uspekhi

V. L. Kuz’min and V. P. Romanov, "Coherent phenomena in light scattering from disordered systems," Phys.-Uspekhi 39, 231-260 (1996).
[CrossRef]

Other

D. Mackowski, K. Fuller, and M. Mishchenko, "Codes for calculation of scattering by clusters of spheres." ftp://ftp.eng.auburn.edu/pub/dmckwski/scatcodes/index.html.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, Cambridge, UK, 2002). http://www.giss.nasa.gov/~crmim/books.html.

A. Penttilä and K. Lumme, "Coherent backscattering effects with Discrete Dipole Approximation method," in Peer-Reviewed Abstracts of the Tenth Conference on Electromagnetic & Light Scattering, G. Videen, M. Mishchenko, M. P. Mengüç, and N. Zakharova, eds. (http://www.giss.nasa.gov/~crmim/, 2007), pp. 157-160.

J. W. Hovenier, C. van der Mee, and H. Domke, Transfer of Polarized Light in Planetary Atmospheres - Basic Concepts and Practical Methods (Springer, Berlin, 2004).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge U. Press, Cambridge, UK, 2006).

H. C. van de Hulst, Multiple Light Scattering. Tables, Formulas, and Applications (Academic Press, San Diego, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Far-field electromagnetic scattering by a volume of discrete random medium.

Fig. 2.
Fig. 2.

Far-field scattering properties of a volume of discrete random medium.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E ( r ) = E inc ( r ) + i = 1 N E i sca ( r ) ,
E i sca ( r ) = V i d r ' G ( r , r ' ) V i d r T i r ' r E i ( r ) ,
T i ( r , r ' ) = k 1 2 [ [ m i 2 ( r ) 1 ] δ ( r r ' ) I + k 1 2 [ m i 2 ( r ) 1 ] V i d r G r , r T i ( r , r ' ) , r , r ' V i , ]
E i ( r ) = E inc ( r ) + j ( i ) = 1 N V j d r ' G ( r , r ' ) V j d r T j ( r ' , r ) E j ( r ) , r V i , i = 1 , . . . , N .
E = E inc + i = 1 N G ̂ T ̂ i E i ,
E i = E inc + j ( i ) = 1 N G ̂ T ̂ j E j ,
G ̂ T ̂ j E j = V j d r ' G ( r , r ' ) V j d r T j ( r , r ) E j ( r ) .
E i = E inc + j ( i ) = 1 N G ̂ T ̂ j E inc + j ( i ) = 1 l ( j ) = 1 N G ̂ T ̂ j G ̂ T ̂ l E inc + j ( i ) = 1 l ( j ) = 1 m ( l ) = 1 N G ̂ T ̂ j G ̂ T ̂ l G ̂ T ̂ m E inc + . . . ,
E = E inc + i = 1 N G ̂ T ̂ i E inc + i = 1 j ( i ) = 1 N G ̂ T ̂ i G ̂ T ̂ j E inc + i = 1 j ( i ) = 1 l ( j ) = 1 N G ̂ T ̂ i G ̂ T ̂ j G ̂ T ̂ l E inc + . . . .
[ I sca Q sca U sca V sca ] [ a 1 ( Θ ) b 1 ( Θ ) 0 0 b 1 ( Θ ) a 2 ( Θ ) 0 0 0 0 a 3 ( Θ ) b 2 ( Θ ) 0 0 b 2 ( Θ ) a 4 ( Θ ) ] [ I inc Q inc U inc V inc ] ,
1 2 0 π sin Θ a 1 ( Θ ) = 1 .
1 2 ( I sca + V sca ) 1 2 [ a 1 ( Θ ) + a 4 ( Θ ) ]
μ L = I sca Q sca I sca + Q sca = a 1 ( Θ ) a 2 ( Θ ) a 1 ( Θ ) + 2 b 1 ( Θ ) + a 2 ( Θ )
μ C = I sca + V sca I sca V sca = a 1 ( Θ ) + a 4 ( Θ ) a 1 ( Θ ) a 4 ( Θ ) .

Metrics